CETIFICATION

SDG No:

JC15883

Laboratory:

Accutest, New Jersey

Site:

BMSMC, Former Tank Farm

Matrix:

Groundwater

SM04.00.06 Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Former tank Farm area. The BMSMC facility is located in Humacao, PR. Samples were taken March 4, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey that reported the data under SDG No.: JC15883. Results were validated using the latest guidelines (July, 2015) of the EPA Hazardous Waste Support Section and the QC criteria for SW 846 methods, latest revision, for low molecular weight alcohols (LMWA). The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. Data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	ANALYSIS PERFORMED
JC15518-1	MW-15	VOCs; SVOCs; NAPHTHALENE; 1,4-DIOXANE (SIM); LMWA
JC15518-1D	MW-15MSD	VOCs; SVOCs; NAPHTHALENE; 1,4-DIOXANE (SIM); LMWA
JC15518-1S	MW-15MS	VOCs; SVOCs; NAPHTHALENE; 1,4-DIOXANE (SIM); LMWA
JC15518-2	MW-17	VOCs; SVOCs; NAPHTHALENE; 1,4-DIOXANE (SIM); LMWA
JC15518-3	MW-14	VOCs; SVOCs; NAPHTHALENE; 1,4-DIOXANE (SIM); LMWA
JC15518-4	MW-18	VOCs; SVOCs; NAPHTHALENE; 1,4-DIOXANE (SIM); LMWA
JC15518-9	TB030316	VOCs; LMWA

LIC # 1

A 1526591

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

April 12, 2016

SGS Accutest

Report of Analysis

By

XC

Prep Date

Page 1 of 2

Client Sample ID: MW-15

Lab Sample ID: JC15883-1

File ID

Matrix:

AQ - Ground Water

DF

1

Date Sampled: 03/04/16 Date Received: 03/10/16

Method:

SW846 8260C

Percent Solids: n/a

Project:

BMSMC, Former Tank Farm, PR

Analyzed

03/11/16

Analytical Batch Prep Batch V3D5036 n/a

Run #1 Run #2

Purge Volume

3D117669.D

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Benzene	ND	0.50	0.24	ug/l	
100-44-7	Benzyl Chloride	ND	5.0	0.21	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.37	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.23	ug/l	
75-25-2	Bromoform	ND	1.0	0.23	ug/l	
74-83-9	Bromomethane	ND	2.0	0.42	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	5.6	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.25	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l	
75-00-3	Chloroethane	ND	1.0	0.34	ug/l	
67-66-3	Chloroform	ND	1.0	0.19	ug/l	
74-87-3	Chloromethane	ND	1.0	0.41	ug/l	
110-82-7	Cyclohexane	0.70	5.0	0.28	ug/l	1
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.99	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.15	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.23	ug/l	
95-50-1	1,2-Dichlorobenzene	0.31	1.0	0.19	ug/l	J
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.23	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.27	ug/l ~	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.90	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.17	ug/l	00400
107-06-2	1,2-Dichloroethane	ND	1.0	0.18	ug/l	SE ISOCANO A
7 5-35-4	1,1-Dichloroethene	ND	1.0	0.51	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l	8 Rafnel Infante
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.65	ug/l	Rafael Infante Méndez LIC # 1888
78-87-5	1,2-Dichloropropane	ND	1.0	0.39	ug/l	11C # 1888 181
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	LIC # 1088
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	SELENCO LICENCIAS.
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l	COLICER
76-13-1	Freon 113	ND	5.0	0.52	ug/i	6198

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-15

Lab Sample ID: JC15883-1

Matrix:

AQ - Ground Water

Method: SW846 8260C Project:

BMSMC, Former Tank Farm, PR

Date Sampled: Date Received:

03/04/16 03/10/16

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	1.7	ug/l	
98-82-8	Isopropylbenzene	30.0	1.0	0.23	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	5.0	1.9	ug/l	
108-87-2	Methylcyclohexane	0.56	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	34.9	1.0	0.24	ug/l	_
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	5.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.73	ug/l	
100-42-5	Styrene	ND	1.0	0.27	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.40	ug/l	
109-99-9	Tetrahydrofuran	4.5	10	1.4	ug/l	J
108-88-3	Toluene	ND	1.0	0.16	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.23	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.21	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.43	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.22	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.15	ug/l	
	m,p-Xylene	0.41	1.0	0.38	ug/l	J
95-47-6	o-Xylene	ND	1.0	0.17	ug/l	
1330-20-7	Xylene (total)	0.41	1.0	0.17	ug/l	J
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts	

108%

104%

97%

103%

1868-53-7

17060-07-0

2037-26-5

460-00-4

MDL = Method Detection Limit

RL = Reporting Limit

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

J = Indicates an estimated value

76-120%

73-122%

84-119%

78-117%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

10 of 601 ACCUTEST

E = Indicates value exceeds calibration range

Client Sample ID: MW-15

Lab Sample ID:

JC15883-1

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: Date Received:

03/04/16 03/10/16

Percent Solids: n/a

Project:

BMSMC, Former Tank Farm, PR

Analyzed

03/11/16

Run #1

File ID P103277.D DF 1

Ву LK Prep Date 03/11/16

Prep Batch OP91987

Q

Analytical Batch EP4536

Run #2

Initial Volume

Final Volume

Run #1 Run #2 970 ml 1.0 ml

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDŁ	Unit
95-57-8	2-Chlorophenol	ND	5.2	0.96	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	1.4	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.2	1.3	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.1	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	0.90	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.84	ug/l
	3&4-Methylphenol	ND	2.1	0.69	ug/l
88-75-5	2-Nitrophenol	ND	5.2	1.5	ug/l
100-02-7	4-Nitrophenol	ND	10	1.1	ug/l
87-86-5	Pentachlorophenol	ND	5.2	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.32	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.2	1.5	ug/l
83-32-9	Acenaphthene	ND	1.0	0.29	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.25	ug/l
98-86-2	Acetophenone	ND	2.1	0.28	ug/I
120-12-7	Anthracene	ND	1.0	0.25	ug/l
1912-24-9	Atrazine	ND	2.1	0.43	ug/l
100-52-7	Benzaldehyde	ND	5.2	0.35	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.32	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.34	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.33	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.42	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.38	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.38	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.28	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.26	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l
106-47-8	4-Chloroaniline	ND	5.2	0.24	ug/l
86-74-8	Carbazole	ND	1.0	0.30	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-15

Lab Sample ID: JC15883-1 Matrix: AQ - Ground Water

Method: SW846 8270D SW846 3510C Project:

BMSMC, Former Tank Farm, PR

Date Sampled: Date Received: 03/10/16

03/04/16

Percent Solids: n/a

Q

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDŁ	Units
105-60-2	Caprolactam	ND	2.1	0.44	ug/l
218-01-9	Chrysene	ND	1.0	0.36	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.27	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.35	ug/l
108-60-1	his(2-Chloroisopropyl)ether	ND	2.1	0.29	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.28	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.27	ug/l
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.33	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.55	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.38	ug/l
132-64-9	Dibenzofuran	ND 💀	5.2	0.28	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.81	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.30	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.25	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.32	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.79	ug/l
206-44-0	Fluoranthene	ND	1.0	0.24	ug/l
86-73-7	Fluorene	ND	1.0	0.30	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.44	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.38	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	0.30	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.23	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.40	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	I-Methylnaphthalene	ND	1.0	0.27	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.30	ug/l
88-74-4	2-Nitroaniline	ND	5.2	0.22	ug/l
99-09-2	3-Nitroaniline	ND	5.2	0.25	ug/l
100-01-6	4-Nitroaniline	ND	5.2	0.35	ug/l
91-20-3	Naphthalene	ND	1.0	0.29	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.48	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.30	ug/I
85-01-8	Phenanthrene	ND	1.0	0.24	ug/l
129-00-0	Pyrene	ND	1.0	0.35	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.37	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

ND = Not detected

367-12-4

MDL = Method Detection Limit

61%

RL = Reporting Limit

2-Fluorophenol

J = Indicates an estimated value

14-88%

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 3 of 3

Client Sample ID:

MW-15

Lab Sample ID:

JC15883-1

AQ - Ground Water

Date Sampled:

03/04/16

Matrix: Method:

SW846 8270D SW846 3510C

Date Received: 03/10/16

Project:

BMSMC, Former Tank Farm, PR

Percent Solids: n/a

ABN TCL List (SOM0 1.1)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	44%		10-110%
118-79-6	2,4,6-Tribromophenol	104%		39-149%
4165-60-0	Nitrobenzene-d5	98%		32-128%
321-60-8	2-Fluorobiphenyl	93%		35-119%
1718-51-0	Terphenyl-d14	91%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: Lab Sample ID:

MW-15 JC15883-1

Matrix:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C

Method: Project:

BMSMC, Former Tank Farm, PR

Date Sampled:

03/04/16 Date Received: 03/10/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4M64079.D	1	03/15/16	LK	03/11/16	OP91987A	E4M2841
Run #2							

Initial Volume Final Volume Run #1 970 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 5.00	0.10 0.10	0.014 0.055	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Tembenyl-d14	92% 67% 80%		19-1	25% 27%	

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

SGS Accutest

Report of Analysis

Ву

Page 1 of 1

Client Sample ID: MW-15

Lab Sample ID: Matrix:

JC15883-1

AQ - Ground Water

Date Sampled:

03/04/16 03/10/16

Method:

SW846-8015C (DAI)

1

Date Received:

Percent Solids: n/a

Project:

BMSMC, Former Tank Farm, PR

Run #1 Run #2 DF

Analyzed

03/11/16

Prep Date Prep Batch **Analytical Batch** XPL GGH5205 n/a n/a

Low Molecular Alcohol List

File ID

GH103697.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
111-27-3	Hexanol	88%		56-1	45%	
111-27-3	Hexanol	85%		56-1	45%	100

MDL = Method Detection Limit

RL = Reporting Limit

E | Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: Lab Sample ID:

MW-17 JC15883-2

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260C

BMSMC, Former Tank Farm, PR

Date Sampled: Date Received:

Q

03/04/16 03/10/16

Percent Solids: n/a

File ID DF Analyzed Ву **Analytical Batch** Prep Date Prep Batch Run #1 3D117670.D 1 03/11/16 XC V3D5036 n/a n/a Run #2

Purge Volume

Run #1 Run #2 5.0 ml

VOA TCL List

CAS No.	Compound.	Result	RL	MDL	Units
67-64-1	Acetone	ND	10	3.3	ug/l
71-43-2	Benzene	ND	0.50	0.24	ug/l
100-44-7	Benzyl Chloride	ND	5.0	0.21	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.37	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.23	ug/l
75-25-2	Bromoform	ND	1.0	0.23	ug/l
74-83-9	Bromomethane	ND	2.0	0.42	ug/l
78-93-3	2-Butanone (MEK)	ND	10	5.6	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.25	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l
75-00-3	Chloroethane	ND	1.0	0.34	ug/l
67-66-3	Chloroform	ND	1.0	0.19	ug/l
74-87-3	Chloromethane	ND	1.0	0.41	ug/l
110-82-7	Cyclohexane	ND	5.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.99	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.15	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.23	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.19	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.23	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.27	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.90	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.17	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.18	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.51	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.65	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.39	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l
76-13-1	Freon 113	ND	5.0	0.52	ug/l
					_

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-17

Lab Sample ID: JC15883-2

Matrix: Method: AQ - Ground Water

SW846 8260C Project: BMSMC, Former Tank Farm, PR

Date Sampled: 03/04/16 Date Received:

03/10/16

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	1.7	ug/l	
98-82-8	Isopropylbenzene	17.7	1.0	0.23	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	5.0	1.9	ug/l	
108-87-2	Methylcyclohexane	0.26	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	3.8	1.0	0.24	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.0	ug/l	
75-09-2	Methylene chloride	ND	2.0	0.73	ug/l	
100-42-5	Styrene	ND	1.0	0.27	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.40	ug/l	
109-99-9	Tetrahydrofuran	ND	10	1.4	ug/l	
108-88-3	Toluene	ND	1.0	0.16	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.23	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.21	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.43	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.22	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.15	ug/l	
	m,p-Xylene	0.76	1.0	0.38	ug/l	J
95-47-6	o-Xylene	0.18	1.0	0.17	ug/l	J
1330-20-7	Xylene (total)	0.94	1.0	0.17	ug/I	J
CACNO	Surrogata Dansterias	Dun# 1	Dun# 2	T ::		

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	107%		76-120%
17060-07-0	1,2-Dichloroethane-D4	105%		73-122%
2037-26-5	Toluene-D8	97%		84-119%
460-00-4	4-Bromofluorobenzene	100%		78-117%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

By

LK

Analyzed

03/11/16

Prep Date

03/11/16

Client Sample ID: MW-17

Lab Sample ID: JC15883-2

Matrix:

AQ - Ground Water

DF

1

Date Sampled: Date Received:

03/04/16 03/10/16

Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Former Tank Farm, PR

Prep Batch OP91987

Q

Analytical Batch EP4536

Run #1 Run #2

P103278.D

File ID

Final Volume

Initial Volume 970 ml

1.0 ml

Run #1 Run #2

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.2	0.96	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	1.4	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.2	1.3	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.1	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	0.90	ug/l
95-48-7	2-Methylphenol	ND	2.1	0.84	ug/l
	3&4-Methylphenol	ND	2.1	0.69	ug/l
88-75-5	2-Nitrophenol	ND	5.2	1.5	ug/l
100-02-7	4-Nitrophenol	ND	10	1.1	ug/l
87-86-5	Pentachlorophenol	ND	5.2	1.5	ug/l
108-95-2	Phenol	ND	2.1	0.32	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.5	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.2	1.5	ug/l
83-32-9	Acenaphthene	ND	1.0	0.29	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.25	ug/l
98-86-2	Acetophenone	ND	2.1	0.28	ug/l
120-12-7	Anthracene	ND	1.0	0.25	ug/l
1912-24-9	Atrazine	ND	2.1	0.43	ug/l
100-52-7	Benzaldehyde	ND	5.2	0.35	ug/l
56-55-3	Benzo(a) anthracene	ND	1.0	0.32	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.34	ug/l
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.33	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.42	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.38	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.38	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.1	0.28	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.26	ug/l
91-58-7	2-Chloronaphthalene	ND	2.1	0.31	ug/l
106-47-8	4-Chloroaniline	ND	5.2	0.24	ug/l
86-74-8	Carbazole	ND	1.0	0.30	ug/l

Mendez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: Lab Sample ID:

MW-17 JC15883-2

AQ - Ground Water

Matrix: Method: Project:

SW846 8270D SW846 3510C BMSMC, Former Tank Farm, PR Date Sampled: Date Received:

Q

J

03/04/16 03/10/16

Percent Solids: n/a

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units
105-60-2	Caprolactam	ND	2.1	0.44	ug/l
218-01-9	Chrysene	ND	1.0	0.36	ug/l
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.27	ug/l
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.35	ug/l
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.1	0.29	ug/l
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.28	ug/l
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.27	ug/I
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.33	ug/l
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.55	ug/l
123-91-1	1,4-Dioxane	12.4	1.0	0.74	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.38	ug/l
132-64-9	Dibenzofuran	ND	5.2	0.28	ug/l
84-74-2	Di-n-butyl phthalate	ND	2.1	0.81	ug/l
117-84-0	Di-n-octyl phthalate	ND	2.1	0.30	ug/l
84-66-2	Diethyl phthalate	ND	2.1	0.25	ug/l
131-11-3	Dimethyl phthalate	ND	2.1	0.32	ug/l
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	0.79	ug/l
206-44-0	Fluoranthene	ND	1.0	0.24	ug/l
86-73-7	Fluorene	0.54	1.0	0.30	ug/l
118-74-1	Hexachlorobenzene	ND	1.0	0.44	ug/l
87-68-3	Hexachlorobutadiene	ND	1.0	0.38	ug/l
77-47-4	Hexachlorocyclopentadiene	ND	10	0.30	ug/l
67-72-1	Hexachloroethane	ND	2.1	0.23	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.40	ug/l
78-59-1	Isophorone	ND	2.1	0.29	ug/l
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l
91-57-6	2-Methylnaphthalene	ND	1.0	0.30	ug/l
88-74-4	2-Nitroaniline	ND	5.2	0.22	ug/l
99-09-2	3-Nitroaniline	ND	5.2	0.25	ug/l
100-01-6	4-Nitroaniline	ND	5.2	0.35	ug/l
91-20-3	Naphthalene	ND	1.0	0.29	ug/l
98-95-3	Nitrobenzene	ND	2.1	0.48	ug/l
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.32	ug/l
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.30	ug/l
85-01-8	Phenanthrene	ND	1.0	0.24	ug/l
129-00-0	Pyrene	ND	1.0	0.35	ug/l
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.37	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-17

Lab Sample ID: JC15883-2

Matrix: Method: AQ - Ground Water

Date Sampled: 03/ Date Received: 03/

03/04/16 03/10/16

Project:

SW846 8270D SW846 3510C BMSMC, Former Tank Farm, PR

Percent Solids: n/a

ABN TCL List (SOM0 1.1)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
367-12-4	2-Fluorophenol	66%		14-88%
4165-62-2	Phenol-d5	46%		10-110%
118-79-6	2,4,6-Tribromophenol	107%		39-149%
4165-60-0	Nitrobenzene-d5	104%		32-128%
321-60-8	2-Fluorobiphenyl	96%		35-119%
1718-51-0	Terphenyl-d14	96%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: Lab Sample ID:

MW-17 JC15883-2

Matrix:

AQ - Ground Water

Method: Project:

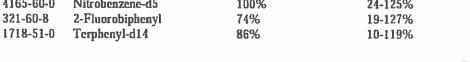
SW846 8270D BY SIM SW846 3510C

BMSMC, Former Tank Farm, PR

Date Sampled:

03/04/16 Date Received: 03/10/16

Percent Solids: n/a


	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4M64080.D	1	03/15/16	LK	03/11/16	OP91987A	E4M2841

Run #2

Initial Volume Final Volume Run #1 970 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
91-20-3	Naphthalene	ND	0.10	0.014	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	100%		24-1	25%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Raw Data: GH103700.D

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: MW-17

Lab Sample ID:

JC15883-2

Matrix:

AQ - Ground Water

Method:

Run #2

SW846-8015C (DAI)

Date Sampled: (Date Received: (

03/04/16

Date Received: 03/ Percent Solids: n/a

03/10/16

Project: BMSMC, Former Tank Farm, PR

File ID Run #1 GH103700.D

DF Analyzed 1 03/11/16

By XPL Prep Date n/a Prep Batch n/a

Q

Analytical Batch

GGH5205

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	
64-17-5	Ethanol	ND	100	55	ug/l	
78-83- 1	Isobuty! Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

111-27-3 Hexanol 111-27-3 Hexanol

100% 101%

56-145% 56-145%

MDL = Method Detection Limit

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

RL = Reporting Limit

E = Indicates value exceeds calibration range

By

XC

Prep Date

n/a

Page 1 of 2

Client Sample ID: Lab Sample ID:

MW-14 JC15883-3

Date Sampled: 03/04/16

Matrix: Method: AQ - Ground Water SW846 8260C

Date Received: 03/10/16

Project:

DF

Q

Percent Solids: n/a

BMSMC, Former Tank Farm, PR

Analyzed

03/11/16

Prep Batch n/a

Analytical Batch V3D5036

Run #1 Run #2

Run #1

Run #2

Purge Volume

File ID

5.0 ml

3D117682.D

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units
67-64-1	Acetone	ND	10	3.3	ug/l
71-43-2	Benzene	ND	0.50	0.24	ug/l
100-44-7	Benzyl Chloride	ND	5.0	0.21	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.37	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.23	ug/l
75-25-2	Bromoform	ND	1.0	0.23	ug/l
74-83-9	Bromomethane	ND	2.0	0.42	ug/l
78-93-3	2-Butanone (MEK)	ND	10	5.6	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.25	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l
75-00-3	Chloroethane	ND	1.0	0.34	ug/l
67-66-3	Chloroform	ND	1.0	0.19	ug/l
74-87-3	Chloromethane	ND	1.0	0.41	ug/l
110-82-7	Cyclohexane	ND	5.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.99	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.15	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.23	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.19	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.23	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.27	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.90	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.17	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.18	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.51	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.65	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.39	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l
76-13-1	Freon 113	ND	5.0	0.52	ug/l

Méndez IC # 188

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: Lab Sample ID:

MW-14 JC15883-3

Matrix: Method:

AQ - Ground Water SW846 8260C

Project:

BMSMC, Former Tank Farm, PR

Date Sampled: Date Received: 03/10/16

Q

03/04/16

Percent Solids: n/a

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units
591-78-6	2-Hexanone	ND	5.0	1.7	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.23	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.21	ug/l
79-20-9	Methyl Acetate	ND	5.0	1.9	ug/l
108-87-2	Methylcyclohexane	ND	5.0	0.22	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.24	ug/l
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.0	ug/l
75-09-2	Methylene chloride	ND	2.0	0.73	ug/l
100-42-5	Styrene	ND	1.0	0.27	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.40	ug/l
109-99-9	Tetrahydrofuran	ND	10	1.4	ug/l
108-88-3	Toluene	ND	1.0	0.16	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.23	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.21	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.21	ug/l
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.43	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.22	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.15	ug/l
	m,p-Xylene	ND	1.0	0.38	ug/l
95-47-6	o-Xylene	ND	1.0	0.17	ug/l
1330-20-7	Xylene (total)	ND	1.0	0.17	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	100%		76-12	20%
17060-07-0	1,2-Dichloroethane-D4	97%		73-17	22%
2037-26-5	Toluene-D8	95%		84-11	19%
460-00-4	4-Bromofluorobenzene	96%		78-11	17%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Client Sample ID: MW-14

Lab Sample ID: JC15883-3

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Project:

BMSMC, Former Tank Farm, PR

Date Sampled: 03/04/16

Date Received: 03/10/16

Percent Solids: n/a

File ID DF Ву **Analytical Batch** Analyzed Prep Date Prep Batch Run #1 P103279.D 03/11/16 LK 03/11/16 OP91987 EP4536

Run #2

Final Volume Initial Volume

1000 ml

 $1.0 \, \mathrm{ml}$

Run #1 Run #2

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.93	ug/l	
59-50 -7	4-Chloro-3-methyl phenol	ND	5.0	1.4	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	1.3	ug/l	
51-28-5	2,4-Dinitrophenol	ND	10	1.1	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	0.87	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.82	ug/l	
	3&4-Methylphenol	ND	2.0	0.67	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	1.4	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.1	ug/l	
87-86-5	Pentachlorophenol	ND	5.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.31	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.4	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	1.4	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.29	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.24	ug/l	
98-86-2	Acetophenone	ND	2.0	0.28	ug/l	
120-12-7	Anthracene	ND	1.0	0.25	ug/l	
1912-24-9	Atrazine	ND	2.0	0.42	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.34	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.32	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.33	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.32	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.41	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.37	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.37	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.27	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.26	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.30	ug/l	
106-47-8	4-Chloroaniline	0.90	5.0	0.23	ug/l	J
86-74-8	Carbazole	ND	1.0	0.29	ug/l	

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

Méndez

Page 2 of 3

Client Sample ID: Lab Sample ID:

MW-14 JC15883-3

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Former Tank Farm, PR Date Sampled: Date Received: 03/10/16

03/04/16

Percent Solids: n/a

ABN TCL List (SOM0 1.1)

2001 1001	Dist (BOING 1.1)					
CAS No.	Compound	Result	RL	MDŁ	Units	Q
105-60-2	Caprolactam	ND	2.0	0.43	ug/l	
218-01-9	Chrysene	ND	1.0	0.35	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.26	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.34	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.28	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.27	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.26	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.32	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.53	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.27	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.79	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.29	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.24	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.31	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	0.77	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.23	ug/l	
86-73-7	Fluorene	ND	1.0	0.29	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.42	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.36	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	0.29	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.22	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.38	ug/l	
78-59-1	Isophorone	ND	2.0	0.29	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.29	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.21	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.24	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.34	ug/l	
91-20-3	Naphthalene	ND	1.0	0.28	ug/l	SE VOCHOO
98-95-3	Nitrobenzene	ND	2.0	0.46	ug/l	PROCEED
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.31	ug/l	1 3
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.29	ug/l	fael Infa
85-01-8	Phenanthrene	ND	1.0	0.23	ug/l	Méndez
129-00-0	Pyrene	ND	1.0	0.34	ug/l	IC 188
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.36	ug/l	(100
				-	-0	The same
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	ACO LICEN
367-12-4	2-Fluorophenol	62%		14-8	8%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Page 3 of 3

Client Sample ID: MW-14 Lab Sample ID: JC15883-3

Matrix: AQ - Ground Water

SW846 8270D SW846 3510C

Date Received: 03/10/16 Percent Solids: n/a

Date Sampled: 03/04/16

Method: Project:

BMSMC, Former Tank Farm, PR

ABN TCL List (SOM0 1.1)

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	44%		10-110%
118-79-6	2,4,6-Tribromophenol	102%		39-149%
4165-60-0	Nitrobenzene-d5	96%		32-128%
321-60-8	2-Fluorobiphenyl	95%		35-119%
1718-51-0	Terphenyl-d14	91%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-14 JC15883-3

Matrix:

Method: Project:

AQ - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Former Tank Farm, PR

Date Sampled: 03/04/16

Q

Date Received: 03/10/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4M64081.D	1	03/15/16	LK	03/11/16	OP91987A	E4M2841
Run #2							

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

CAS No.	Compound	Result	RL	MDL	Units
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 1.76	0.10 0.10	0.013 0.053	ug/l ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	92% 69%			25% 27%
1718-51-0	Terphenyl-d14	82%		10-1	19%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Project:

Report of Analysis

Page 1 of 1

Client Sample ID: MW-14 Lab Sample ID: JC15883-3

Matrix: AQ - Ground Water Method: SW846-8015C (DAI)

BMSMC, Former Tank Farm, PR

Date Sampled: 03/04/16 Date Received: 03/10/16

Percent Solids: n/a

Ву File ID DF Analyzed Prep Date Prep Batch **Analytical Batch** Run #1 GH103701.D 03/11/16 XPL **GGH5205** 1 n/a n/a Run #2

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
111-27-3	Hexanol	99%		56-1	45%	
111-27-3	Hexanol	102%		5 6 -1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: MW-18 Lab Sample ID:

JC15883-4

Date Sampled: 03/04/16

Matrix:

AQ - Ground Water SW846 8260C

DF

03/10/16 Date Received:

Method: Project:

BMSMC, Former Tank Farm, PR

Analyzed

03/11/16

Percent Solids:

Analytical Batch

Run #1 Run #2 3D117683.D 1 By XC Prep Date

n/a

Prep Batch n/a

V3D5036

Purge Volume

Run #1 Run #2 5.0 ml

File ID

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.3	ug/l	
71-43-2	Вслгене	ND	0.50	0.24	ug/l	
100-44-7	Benzyl Chloride	ND	5.0	0.21	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.37	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.23	ug/l	
75-25-2	Bromoform	ND	1.0	0.23	ug/l	
74-83-9	Bromomethane	ND	2.0	0.42	ug/l	
78-93- 3	2-Butanone (MEK)	ND	10	5.6	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.25	ug/l	
56-23- 5	Carbon tetrachloride	ND	1.0	0.22	ug/l	
108-90-7	Chlorobenzene	0.90	1.0	0.19	ug/l	J
75-00-3	Chloroethane	ND	1.0	0.34	ug/l	
67-66-3	Chloroform	ND	1.0	0.19	ug/l	
74-87-3	Chloromethane	ND	1.0	0.41	ug/l	
110-82-7	Cyclohexane	1.5	5.0	0.28	ug/l	J
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.99	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.15	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.23	ug/l	
95-50-1	1,2-Dichlorobenzene	0.68	1.0	0.19	ug/l	J
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.23	ug/l	
106-46-7	1,4-Dichlorobenzene	0.33	1.0	0.27	ug/l	J
75-71-8	Dichlorodifluoromethane	ND	2.0	0.90	ug/l	
75-34-3	1, I-Dichloroethane	ND	1.0	0.17	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.18	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.51	ug/l	
156-59-2	cis-1,2-Dichloroethene	0.31	1.0	0.27	ug/l	J
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.65	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.39	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l	
100-41-4	Ethylbenzene	1.5	1.0	0.27	ug/l	
76-13-1	Freon 113	ND	5.0	0.52	ug/l	

Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: Lab Sample ID:

MW-18 JC15883-4

SW846 8260C

AQ - Ground Water

Date Sampled: 03/04/16 Date Received: 03/10/16

Percent Solids: n/a

Method: Project:

Matrix:

BMSMC, Former Tank Farm, PR

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	1.7	ug/l	
98-82-8	Isopropylbenzene	7.5	1.0	0.23	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.21	ug/l	
79-20-9	Methyl Acetate	ND	5.0	1.9	ug/l	
108-87-2	Methylcyclohexane	4.0	5.0	0.22	ug/l	J
1634-04-4	Methyl Tert Butyl Ether	0.34	1.0	0.24	ug/l	J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.0	ug/l	_
75-09-2	Methylene chloride	ND	2.0	0.73	ug/l	
100-42-5	Styrene	ND	1.0	0.27	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.40	ug/l	
109-99-9	Tetrahydrofuran	ND	10	1.4	ug/l	
108-88-3	Toluene	0.40	1.0	0.16	ug/l	J
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.23	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.21	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.21	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.43	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.22	ug/l	
75-01-4	Vinyl chloride	0.26	1.0	0.15	ug/l	J
	m,p-Xylene	3.8	1.0	0.38	ug/l	
95-47-6	o-Xylene	0.91	1.0	0.17	ug/l	J
1330-20-7	Xylene (total)	4.7	1.0	0.17	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4	101% 98%		76-120% 73-122%
2037-26-5	Toluene-D8	96%		84-119%
460-00-4	4-Bromofluorobenzene	100%		78-117%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: Lab Sample ID:

MW-18 JC15883-4

Matrix:

AQ - Ground Water

DF

Date Received: 03/10/16

Date Sampled: 03/04/16

Method:

SW846 8270D SW846 3510C

Project:

BMSMC, Former Tank Farm, PR

Percent Solids: n/a

Run #1

File ID P103280.D Analyzed 03/11/16

By Prep Date LK 03/11/16

Prep Batch OP91987

Q

Analytical Batch EP4536

Run #2

Initial Volume **Final Volume**

Run #1

930 ml

1.0 ml

Run #2

ABN TCL List (SOM0 1.1)

	-				
CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.4	1.0	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.4	1.5	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.4	1.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	11	1.1	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.4	0.94	ug/l
95-48-7	2-Methylphenol	ND	2.2	0.88	ug/l
	3&4-Methylphenol	ND	2.2	0.72	ug/l
88-75-5	2-Nitrophenol	ND	5.4	1.5	ug/l
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l
87-86-5	Pentachlorophenol	ND	5.4	1.5	ug/l
108-95-2	Phenol	ND	2.2	0.34	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.4	1.5	ug/l
95-95-4	2,4,5-Trichlorophenal	ND	5.4	1.6	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.4	1.5	ug/l
83-32-9	Acenaphthene	ND	1.1	0.31	ug/l
208-96-8	Acenaphthylene	ND	1.1	0.26	ug/l
98-86-2	Acetophenone	ND	2.2	0.30	ug/l
120-12-7	Anthracene	ND	1.1	0.26	ug/l
1912-24-9	Atrazine	ND	2.2	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.4	0.36	ug/l
56-55-3	Benzo(a)anthracene	ND	1.1	0.34	ug/l
50-32-8	Benzo(a) pyrene	ND	1.1	0.36	ug/l
205-99-2	Benzo(b) fluoranthene	ND	1.1	0.34	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.44	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.40	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.2	0.29	ug/l
92-52-4	1,1'-Biphenyl	ND	1.1	0.28	ug/l
91-58-7	2-Chloronaphthalene	ND	2.2	0.32	ug/l
106-47-8	4-Chloroaniline	ND	5.4	0.25	ug/l
86-74-8	Carbazole	ND	1.1	0.32	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: MW-18 Lab Sample ID:

JC15883-4

Date Sampled:

03/04/16

Matrix: Method: AQ - Ground Water SW846 8270D SW846 3510C Date Received: 03/10/16

Project:

BMSMC, Former Tank Farm, PR

Percent Solids:

ABN TCL List (SOM0 1.1)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.46	ug/l	
218-01-9	Chrysene	ND	1.1	0.37	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.37	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.31	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.29	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.28	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.35	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.57	ug/l	
53-70-3	Dibenzo (a, b) anthracene	ND	1.1	0.39	ug/l	
132-64-9	Dibenzofuran	ND	5.4	0.29	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.85	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.31	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.2	0.34	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	0.83	ug/l	
206-44-0	Fluoranthene	0.44	1.1	0.25	ug/l	J
86-73-7	Fluorene	1.1	1.1	0.32	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.45	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.39	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	0.32	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.24	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.41	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.31	ug/l	
88-74-4	2-Nitroaniline	ND	5.4	0.22	ug/l	
99-09-2	3-Nitroaniline	ND	5.4	0.26	ug/l	
100-01-6	4-Nitroaniline	ND	5.4	0.37	ug/l	
91-20-3	Naphthalene	ND	1.1	0.30	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.50	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.34	ug/l	- ANABA
86-30-6	N-Nitrosodiphenylamine	ND	5.4	0.32	ug/l	Paramo
85-01-8	Phenanthrene	ND	1.1	0.25	ug/l	
129-00-0	Pyrene	ND	1.1	0.36	ug/l	Guel Infan
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.39	ug/l	Véndez
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	IC = 188
367-12-4	2-Fluorophenol	64%		14-8	8%	MCO LICEN

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: MW-18 Lab Sample ID:

JC15883-4

Date Sampled:

03/04/16

Matrix: Method: AQ - Ground Water SW846 8270D SW846 3510C

03/10/16 Date Received:

Percent Solids:

Project:

BMSMC, Former Tank Farm, PR

ABN TCL List (SOM0 1.1)

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	47%		10-110%
118-79-6	2,4,6-Tribromophenol	105%		39-149%
4165-60-0	Nitrobenzene-d5	101%		32-128%
321-60-8	2-Fluorobiphenyl	94%		35-119%
1718-51-0	Terphenyl-d14	91%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

By

LK

Prep Date

03/11/16

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-18 JC15883-4

File ID

4M64082.D

AQ - Ground Water

DF

1

Date Sampled: Date Received: 03/10/16

03/04/16

Matrix: Method:

SW846 8270D BY SIM SW846 3510C

Analyzod

03/15/16

Percent Solids: n/a

Project:

BMSMC, Former Tank Farm, PR

Prep Batch OP91987A

Analytical Batch E4M2841

Run #1 Run #2

> Initial Volume Final Volume 930 ml

Run #1 Run #2 1.0 ml

CAS No.	Compound	Result	RL	MDL	Units	Q
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 2.11	0.11 0.11	0.014 0.057	ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	96%			25%	
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	71%		19-1	27%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS Accutest

Report of Analysis

Ву

XPL

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-18 JC15883-4

Matrix: Method:

AQ - Ground Water SW846-8015C (DAT)

DF

1

Date Sampled: Date Received:

03/04/16 03/10/16

n/a

Prep Date

n/a

Percent Solids: n/a

Project:

BMSMC, Former Tank Farm, PR

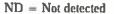
Analyzod

03/11/16

Analytical Batch Prep Batch

GGH5205

Run #1 Run #2


Low Molecular Alcohol List

File ID

GH103702.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83- 1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
111-27-3	Hexanol	123%		56-1	45%	
111-27-3	Hexanol	99%		56-1	45%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: TB030716 Lab Sample ID: JC15883-5

Matrix: Method: AQ - Trip Blank Water

SW846 8260C

Project:

BMSMC, Former Tank Farm, PR

Date Sampled:

Q

03/04/16 Date Received: 03/10/16

Percent Solids: n/a

File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch Run #1 3D117678.D V3D5036 1 03/11/16 XC n/a n/a Run #2

Purge Volume 5.0 ml

Run #1

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Unite
67-64-1	Acetone	ND	10	3.3	ug/l
71-43-2	Benzene	ND	0.50	0.24	ug/l
100-44-7	Benzyl Chloride	ND	5.0	0.21	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.37	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.23	ug/l
75-25-2	Bromoform	ND	1.0	0.23	ug/l
74-83-9	Bromomethane	ND	2.0	0.42	ug/l
78-93-3	2-Butanone (MEK)	ND	10	5.6	ug/l
75-15-0	Carbon disulfide	ND	2.0	0.25	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.22	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.19	ug/l
75-00-3	Chloroethane	ND	1.0	0.34	ug/l
67-66-3	Chloroform	ND	1.0	0.19	ug/l
74-87-3	Chloromethane	ND	1.0	0.41	ug/l
110-82-7	Cyclohexane	ND	5.0	0.28	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.99	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.15	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.23	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.19	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.23	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.27	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.90	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.17	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.18	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.51	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.27	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.65	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.39	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.21	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.19	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.27	ug/l
76-13-1	Freon 113	ND	5.0	0.52	ug/l
					_

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID:

TB030716

Lab Sample ID:

JC15883-5 AQ - Trip Blank Water

Matrix: Method:

SW846 8260C

Project:

BMSMC, Former Tank Farm, PR

Date Sampled:

Q

03/04/16

Date Received: Percent Solids: n/a

03/10/16

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units
591-78-6	2-Hexanone	ND	5.0	1.7	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.23	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.21	ug/l
79-20-9	Methyl Acetate	ND	5.0	1.9	ug/l
108-87-2	Methylcyclohexane	ND	5.0	0.22	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.24	ug/l
108-10-1	4-Methyl-2-pentanone(MIBK)	NĐ	5.0	1.0	ug/I
75-09-2	Methylene chloride	ND	2.0	0.73	ug/l
100-42-5	Styrene	ND	1.0	0.27	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.40	ug/l
109-99-9	Tetrahydrofuran	ND	10	1.4	ug/l
108-88-3	Toluene	ND	1.0	0.16	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.23	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.21	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.21	ug/l
79-01-6	Trichloroethene	ND	1.0	0.22	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.43	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.22	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.15	ug/l
	m,p-Xylene	ND	1.0	0.38	ug/l
95-47-6	o-Xylene	ND	1.0	0.17	ug/l
1330-20-7	Xylene (total)	ND	1.0	0.17	ug/l
CAS No.	Surrogate Recoveries	Run# I	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	97%		76-12	20%
17060-07-0	1,2-Dichloroethane-D4	95%		73-13	22%
2037-26-5	Toluene-D8	96%		84-1	19%
460-00-4	4-Bromofluorobenzene	97%		78-1	17%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

Ву

XPL

n/a

Page 1 of 1

Client Sample ID: TB030716 Lab Sample ID: JC15883-5

Matrix: Method: AQ - Trip Blank Water SW846-8015C (DAI)

DF

1

Date Sampled: Date Received:

n/a

03/04/16 03/10/16

Project:

BMSMC, Former Tank Farm, PR

Analyzed

03/11/16

Percent Solids: n/a

Prep Date	Prep l	Batch	Analytical	Batch

GGH5205

Run #1 Run #2

Low Molecular Alcohol List

File ID

GH103703.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	100	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
111-27-3	Hexanol	113%		56-1	45%	
111-27-3	Hexanol	108%			45%	

MDL = Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC15883

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Former Tank Farm, PR

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch JC15883-1MS 3D117675.D 1 03/11/16 XC n/a n/a V3D5036 JC15883-1MSD 3D117676.D 1 03/11/16 XC n/a n/a V3D5036 JC15883-1 3D117669.D 1 03/11/16 XC n/a n/a V3D5036

The QC reported here applies to the following samples:

JC15883-1, JC15883-2, JC15883-3, JC15883-4, JC15883-5

		JC15883	3-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
				_	_		_	_			
67-64-1	Acetone	ND		50	41.6	83	50	41.8	84	0	33-158/19
71-43-2	Benzene	ND		50	46.8	94	50	47.8	96	2	43-138/12
100-44-7	Benzyl Chloride	ND		50	47.4	95	50	47.6	95	0	48-155/17
74-97-5	Bromochloromethane	ND		50	44.4	89	50	46.0	92	4	75-127/12
75-27-4	Bromodichloromethane	ND		50	44.7	89	50	45.2	90	1	72-128/13
75-25-2	Bromoform	ND		50	45.3	91	50	46.6	93	3	70-131/12
74-83-9	Bromomethane	ND		50	47.8	96	50	50.2	100	5	47-142/16
78-93-3	2-Butanone (MEK)	ND		50	47.7	95	50	49.2	98	3	56-146/12
75-15-0	Carbon disulfide	ND		50	46.7	93	50	48.4	97	4	38-136/17
56-23-5	Carbon tetrachloride	ND		50	45.7	91	50	46.9	94	3	45-149/17
108-90-7	Chlorobenzene	ND		50	48.3	97	50	49.6	99	3	70-124/12
75-00-3	Chloroethane	ND		50	43.4	87	50	45.7	91	5	47-139/15
67-66-3	Chloroform	ND		50	43.9	88	50	45.2	90	3	66-126/13
74-87-3	Chloromethane	ND		50	36.1	72	50	37.1	74	3	41-140/15
110-82-7	Cyclohexane	0.70	J	50	54.6	108	50	55.4	109	1	30-148/17
96-12-8	1,2-Dibromo-3-chloropropane	ND		50	48.4	97	50	50.3	101	4	64-136/14
124-48-1	Dibromochloromethane	ND		50	47.0	94	50	48.0	96	2	75-126/12
106-93-4	1,2-Dibromoethane	ND		50	45.4	91	50	47.1	94	4	77-124/11
95-50-1	1,2-Dichlorobenzene	0.31	J	50	48.6	97	50	49.7	99	2	71-124/12
541-73-1	1,3-Dichlorobenzene	ND		50	47.9	96	50	48.9	98	2	69-125/12
106-46-7	1,4-Dichlorobenzene	ND		50	47.0	94	50	47.8	96	2	69-122/12
75-71-8	Dichlorodifluoromethane	ND		50	42.7	85	50	44.5	89	4	24-161/20
75-34-3	1,1-Dichloroethane	ND		50	44.0	88	50	45.7	91	4	60-129/13
107-06-2	1,2-Dichloroethane	ND		50	43.5	87	50	44.9	90	3	72-133/12
75-35-4	1,1-Dichloroethene	ND		50	48.7	97	50	51.1	102	5	40-137/17
156-59-2	cis-1,2-Dichloroethene	ND		50	46.0	92	50	47.5	95	3	57-128/13
156-60-5	trans-1,2-Dichloroethene	ND		50	44.6	89	50	45.7	91	2	53-128/15
78-87-5	1,2-Dichloropropane	ND		50	44.0	88	50	45.0	90	2	69-127/12
	cis-1,3-Dichloropropene	ND		50	48.7	97	50	50.3	101	3	67-129/14
10061-02-6	trans-1,3-Dichloropropene	ND		50	45.6	91	50	46.7	93	2	68-130/14
100-41-4	Ethylbenzene	ND		50	52.5	105	50	54.2	108	3	38-139/12
76-13-1	Freon 113	ND		50	46.2	92	50	47.2	94	2	34-154/18
591-78-6	2-Hexanone	ND		50	53.4	107	50	55.0	LICOCH	Mo	55-148/15
98-82-8	Isopropylbenzene	30.0		50	95.3	131	50	97.4	Leoci	THE S	54-137/15
99-87-6	p-Isopropyltoluene	ND		50	57.5	115	50	58.5	117	2	57- 135/16
79-20-9	Methyl Acetate	ND		50	33.4	67	50	33/5	67fael l	infinite \	3 0-137/13

^{* =} Outside of Control Limits.

Method: SW846 8260C

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC15883 Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Former Tank Farm, PR

Sample File ID D [C15883-1MS 3D117675.D 1 [C15883-1MSD 3D117676.D 1 [C15883-1 3D117669.D 1	Analyzed 03/11/16 03/11/16 03/11/16	By Prep Date XC n/a XC n/a XC n/a	Prep Batch n/a n/a n/a	Analytical Batch V3D5036 V3D5036 V3D5036
--	-------------------------------------	-----------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

JC15883-1, JC15883-2, JC15883-3, JC15883-4, JC15883-5

		JC1588	3-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	%	ug/I	ug/l	%	RPD	Rec/RPD
108-87-2	Methylcyclohexane	0.56	J	50	53.5	106	50	54.1	107	1	30-152/17
1634-04-4	Methyl Tert Butyl Ether	34.9		100	122	87	100	126	91	3	64-132/13
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		50	54.4	109	50	55.6	111	2	68-139/12
75-09-2	Methylene chloride	ND		50	42.1	84	50	44.0	88	4	63-128/13
100-42-5	Styrene	ND		50	57.0	114	50	58.3	117	2	61-134/13
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	43.7	87	50	44.8	90	2	67-126/13
127-18-4	Tetrachloroethene	ND		50	51.3	103	50	51.8	104	1	43-145/15
109-99-9	Tetrahydrofuran	4.5	J	50	48.7	88	50	51.1	93	5	49-135/14
108-88-3	Toluene	ND		50	47.8	96	50	48.7	97	2	51-136/13
87-61-6	1,2,3-Trichlorobenzene	ND		50	52.4	105	50	53.7	107	2	66-140/14
120-82-1	1,2,4-Trichlorobenzene	ND		50	53.6	107	50	54.7	109	2	65-138/15
71-55-6	1,1,1-Trichloroethane	ND		50	46.7	93	50	48.1	96	3	51-141/16
79-00-5	1,1,2-Trichloroethane	ND		50	43.4	87	50	44.5	89	3	71-127/12
79-01-6	Trichloroethene	ND		50	47.1	94	50	48.1	96	2	55-136/14
75-69-4	Trichlorofluoromethane	ND		50	44.1	88	50	45.8	92	4	33-157/21
95-63-6	1,2,4-Trimethylbenzene	ND		50	55.1	110	50	56.1	112	2	40-143/13
75-01-4	Vinyl chloride	ND		50	37.4	75	50	38.7	77	3	34-147/17
	m,p-Xylene	0.41	J	100	111	111	100	113	113	2	42-139/13
95-47-6	o-Xylene	ND		50	57.3	115	50	58.6	117	2	56-134/13
1330-20-7	Xylene (total)	0.41	J	150	168	112	150	172	114	2	46-137/12

CAS No.	Surrogate Recoveries	MS	MSD	JC15883-1	Limits
17060-07-0	Dibromofluoromethane	93%	93%	108%	76-120%
	1,2-Dichloroethane-D4	89%	90%	104%	73-122%
	Toluene-D8	98%	98%	97%	84-119%
	4-Bromofluorobenzene	105%	105%	103%	78-117%

^{* =} Outside of Control Limits.

Page 1 of 3

Method: SW846 8270D

Matrix Spike/Matrix Spike Duplicate Summary Job Number: JC15883

Account: AMANYWP Anderson, Mulholland & Associates

Project: BMSMC, Former Tank Farm, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP91987-MS	P103281.D	1	03/11/16	LK	03/11/16	OP91987	EP4536
OP91987-MSD	P103282.D	1	03/11/16	LK	03/11/16	OP91987	EP4536
JC15883-1	P103277.D	1	03/11/16	LK	03/11/16	OP91987	EP4536

The QC reported here applies to the following samples:

JC15883-1, JC15883-2, JC15883-3, JC15883-4

		JC15883-	1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l	Q	ug/l	ug/l	94	ug/l	ug/l	%	RPD	Rec/RPD
95-57-8	2 Chlanahanal	NID		101	01.0	01	101	00.1	01		10.110/00
59-50-7	2-Chlorophenol 4-Chloro-3-methyl phenol	ND ND		101 101	91.8 103	91 102	101	92.1	91	0	49-110/20
120-83-2	2,4-Dichlorophenol	ND					101	103	102	0	44-121/18
120-63-2				101	100	99	101	100	99	0	42-120/19
51-28-5	2,4-Dimethylphenol	ND		101	105	104	101	105	104	0	33-132/23
534-52-1	2,4-Dinitrophenol	ND		202	194	96	202	200	99	3	21-145/26
	4,6-Dinitro-o-cresol	ND		101	95.4	94	101	95.7	95	0	25-134/27
95-48-7	2-Methylphenol	ND		101	92.1	91	101	94.2	93	2	47-112/18
00 7F F	3&4-Methylphenol	ND		101	90.7	90	101	93.1	92	3	44-113/19
88-75-5	2-Nitrophenol	ND		101	102	101	101	102	101	0	45-118/20
100-02-7	4-Nitrophenol	ND		101	89.7	89	101	89.7	89	0	23-144/28
87-86-5	Pentachlorophenol	ND		101	98.8	98	101	99.4	98	1	25-151/25
108-95-2	Phenol	ND		101	70.3	70	101	70.8	70	1	22-100/22
58-90-2	2,3,4,6-Tetrachlorophenol	ND		101	99.5	99	101	98.6	98	1	44-122/21
95-95-4	2,4,5-Trichlorophenol	ND		101	100	99	101	99.6	99	0	51-124/20
88-06-2	2,4,6-Trichlorophenol	ND		101	99.4	98	101	101	100	2	53-120/21
83-32-9	Acenaphthene	ND		101	88.9	88	101	89.3	88	0	52-120/23
208-96-8	Acenaphthylene	ND		101	86.7	86	101	85.1	84	2	50-101/22
98-86-2	Acetophenone	ND		101	92.1	91	101	91.7	91	0	31-141/23
120-12-7	Anthracene	ND		101	96.5	96	101	95.9	95	1	54-117/22
1912-24-9	Atrazine	ND		101	98.3	97	101	96.2	95	2	42-152/23
100-52-7	Benzaldehyde	ND		101	87.1	86	101	87.4	87	0	10-164/30
56-55-3	Benzo(a)anthracene	ND		101	102	101	101	101	100	1	40-123/24
50-32-8	Benzo(a)pyrene	ND		101	98.8	98	101	98.2	97	1	41-127/25
205-99-2	Benzo(b)fluoranthene	ND		101	96.5	96	101	98.2	97	2	39-127/27
191-24-2	Benzo(g,h,i)perylene	ND		101	90.7	90	101	88.4	88	3	34-128/28
207-08-9	Benzo (k) Nuoranthene	ND		101	98.0	97	101	94.5	94	4	39-122/26
101-55-3	4-Bromophenyl phenyl ether	ND		101	99.7	99	101	100	99	0	51-124/23
85-68-7	Butyl benzyl phthalate	ND		101	110	109	101	110	109	0	21-146/28
92-52-4	1,1'-Biphenyl	ND		101	86.3	85	101	84.8	84	2	27-142/23
91-58-7	2-Chloronaphthalene	ND		101	81.5	81	101	82.8	82	2	51-109/23
106-47-8	4-Chloroaniline	ND		101	56.5	56	101	54.0	53	5	10-110/55
86-74-8	Carbazole	ND		101	99.3	98	101	98.7	98		52-116/22
105-60-2	Caprolactam	ND		101	53.9	53	101	55.2	55	2	10-106/34
218-01-9	Chrysene	ND		101	96.1	95	101	95.7	95	CELLU.	41-128/24
111-91-1	bis(2-Chloroethoxy)methane	ND		101	94.2	93	101	95.4	949		46-120/24
111-44-4	bis(2-Chloroethyl)ether	ND		101	92.0	91	101	91.6	9	0	4.2123/28
	4 4									C	7.15

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8270D

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC15883

Account: AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Former Tank Farm, PR

Sample File ID DF Analyzed OP91987-MS P103281.D 1 03/11/16 OP91987-MSD P103282.D 1 03/11/16 JC15883-1 P103277.D 1 03/11/16	By	Prep Date	Prep Batch	Analytical Batch
	LK	03/11/16	OP91987	EP4536
	LK	03/11/16	OP91987	EP4536
	LK	03/11/16	OP91987	EP4536

The QC reported here applies to the following samples:

JC15883-1, JC15883-2, JC15883-3, JC15883-4

CAS No.	Compound	JC15883- ug/l (lpike lg/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rcc/RPD
108-60-1	bis(2-Chloroisopropyl)ether	ND	1	01	59.1	59	101	60.6	60	3	41-117/25
7005-72-3	4-Chlorophenyl phenyl ether	ND	1	01	88.7	88	101	88.1	87	1	48-121/21
121-14-2	2,4-Dinitrotoluene	ND	1	01	86.2	85	101	84.5	84	2	54-123/27
606-20-2	2,6-Dinitrotoluene	ND	1	01	101	100	101	102	101	1	55-125/26
91-94-1	3,3'-Dichlorobenzidine	ND	2	.02	111	55	202	112	55	1	10-107/47
123-91-1	1,4-Dioxane	5.4		01	65.3	59	101	64.7	59	1	10-119/31
53-70-3	Dibenzo(a,h)anthracene	ND	1	01	96.9	96	101	95.8	95	1	35-130/27
132-64-9	Dibenzofuran	ND		01	89.9	89	101	89.5	89	0	53-112/22
84-74-2	Di-n-butyl phthalate	ND		01	107	106	101	106	105	1	38-129/23
117-84-0	Di-n-octyl phthalate	ND		01	94.6	94	101	93.7	93	1	35-145/26
84-66-2	Diethyl phthalate	ND		01	92.8	92	101	92.0	91	1	16-136/30
131-11-3	Dimethyl phthalate	ND	1	01	92.4	91	101	91.2	90	1	10-143/39
117-81-7	bis(2-Ethylhexyl)phthalate	ND		01	92.6	92	101	93.0	92	0	34-141/28
206-44-0	Fluoranthene	ND	1	01	99.8	99	101	98.3	97	2	47-123/24
86-73-7	Fluorene	ND	1	01	92.0	91	101	90.9	90	1	56-117/22
118-74-1	Hexachlorobenzene	ND		01	91.5	91	101	91.3	90	0	46-125/24
87-68-3	Hexachlorobutadiene	ND	1	01	73.5	73	101	78.0	77	6	26-121/24
77-47-4	Hexachlorocyclopentadiene	ND	2	02	137	68	202	140	69	2	10-133/31
67-72-1	Hexachloroethane	ND	10	01	72.6	72	101	78.0	77	7	35-111/26
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	01	98.1	97	101	95.5	95	3	32-130/30
78-59-1	Isophorone	ND	10	01	103	102	101	103	102	0	47-126/23
90-12-0	1-Methylnaphthalene	ND	10	01	88.3	87	101	88.9	88	1	34-124/25
91-57-6	2-Methylnaphthalene	ND		01	87.2	86	101	88.2	87	1	34-123/24
88-74-4	2-Nitroaniline	ND	1	01	107	106	101	106	105	1	46-137/23
99-09-2	3-Nitroaniline	ND	10	01	67.8	67	101	65.7	65	3	10-110/50
100-01-6	4-Nitroaniline	ND	1	01	98.3	97	101	94.2	93	4	38-118/25
91-20-3	Naphthalene	ND	1	01	85.3	84	101	86.2	85	1	30-121/23
98-95-3	Nitrobenzene	ND	1	01	91.1	90	101	90.3	89	aha .	35-130/25
621-64-7	N-Nitroso-di-n-propylamine	ND	1	01	91.3	90	101	92.2	OF PRICE	NO AS	¥5-123/22
86-30-6	N-Nitrosodiphenylamine	ND	1	01	96.7	96	101	96.3	95	0	-123/24
85-01-8	Phenanthrene	ND	1	01	94.8	94	101	93.9	93 fael	diame	121/23
129-00-0	Pyrene	ND	1	01	102	101	101	102	101Men		24/26
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	1	01	75.3	75	101	76.0	7516	727	8/142/24
								1	ACO THE		*/

^{* =} Outside of Control Limits.

Page 3 of 3

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC15883

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Former Tank Farm, PR

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP91987-MS	P103281.D	1	03/11/16	LK	03/11/16	OP91987	EP4536
OP91987-MSD	P103282.D	1	03/11/16	LK	03/11/16	OP91987	EP4536
JC15883-1	P103277.D	1	03/11/16	LK	03/11/16	OP91987	EP4536

The QC reported here applies to the following samples:

JC15883-1, JC15883-2, JC15883-3, JC15883-4

CAS No.	Surrogate Recoveries	MS	MSD	JC15883-1	Limits
367-12-4	2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	80%	82%	61%	14-88%
4165-62-2		67%	68%	44%	10-110%
118-79-6		102%	106%	104%	39-149%
4165-60-0		92%	93%	98%	32-128%
321-60-8		88%	88%	93%	35-119%
1718-51-0		96%	97%	91%	10-126%

Method: SW846 8270D

^{* =} Outside of Control Limits.

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: JC15883

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Former Tank Farm, PR

Sample File II OP91987A-MS 4M640 OP91987A-MSD 4M640 JC15883-1 4M640	75.D 1 76.D 1	Analyzed 03/15/16 03/15/16 03/15/16	By LK LK LK	Prep Date 03/11/16 03/11/16 03/11/16	Prep Batch OP91987A OP91987A OP91987A	Analytical Batch E4M2841 E4M2841 E4M2841
---	------------------	--	----------------------	---	--	---

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

JC15883-1, JC15883-2, JC15883-3, JC15883-4

CAS No.	Compound	JC15883-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD	
91-20-3 123-91-1	Naphthalene 1,4-Dioxane	ND 5.00	2 2	1.83 5.87	92 44	2 2	1.89 6.76	95 88	3 14	23-140/36 20-160/30	
CAS No.	Surrogate Recoveries	MS	MSD	JC1	5883-1	Limits					
4165-60-0	Nitrobenzene-d5	78%	83%	92%	6	24-125%	6				
321-60-8	2-Fluorobiphenyl	57%	62%	67%	6	19-127%	6				
1718-51-0	Terphenyl-d14	74%	74%	80%	6	10-119%	6				

^{* =} Outside of Control Limits.

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:

JC15883

Account:

AMANYWP Anderson, Mulholland & Associates

Project:

BMSMC, Former Tank Farm, PR

Sample File ID JC15883-1MS GH10369 JC15883-1MSD GH10369 JC15883-1 GH10369	99.D 1	Analyzed 03/11/16 03/11/16 03/11/16	By XPL XPL XPL	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GGH5205 GGH5205 GGH5205
---	--------	--	-------------------------	--------------------------------	---------------------------------	---

The QC reported here applies to the following samples:

Method: SW846-8015C (DAI)

Page 1 of 1

JC15883-1, JC15883-2, JC15883-3, JC15883-4, JC15883-5

CAS No.	Compound	JC15883-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
64-17-5	Ethanol	ND	5000	5340	107	5000	4820	96	10	58-145/27
78-83-1	Isobutyl Alcohol	ND	5000	5150	103	5000	5530	111	7	69-131/25
67-63-0	Isopropyl Alcohol	ND	5000	5390	108	5000	4840	97	11	70-133/28
71-23-8	n-Propyl Alcohol	ND	5000	5170	103	5000	4430	89	15	66-137/29
71-36-3	n-Butyl Alcohol	ND	5000	4520	90	5000	4530	91	0	63-131/25
78-92-2	sec-Butyl Alcohol	ND	5000	5170	103	5000	5030	101	3	64-136/25
67-56-1	Methanol	ND	5000	5070	101	5000	5000	100		48-148/34
CAS No.	Surrogate Recoveries	MS	MSD	JC1	1 5883- 1	Limits				

^{* =} Outside of Control Limits.

	Client information	CHAIN OF Fresh Fonds Corporate 2235 Route 130, Days 732-129-0200 FAX:			FEREN SULL FIG 3 ACCURAGE DUCES 6:	
S LEAR	Anderson Mulholland & Associates	Anderson Mulholland		Analytical info	I make I	
4 200	2706 Westchester Avenue	Project Name			- mendy	
	Address					
人圖訳	Detrohan	Location				1 1 1 1
2 623	City			1 60		
100	Terry Taylor	Project/PO #:		5	1 1 1	
	Send Report to:	BMS: Former Tank	t Farm	SiM SiM	1 1 1	
	Phone #: <u>914-251-0400</u>		2 2	2 2 6	1 1 1	
5 655		2 14-231-128E	8280C	Alcoho 82700		
		Collection	reservation			
3 33	Field ID / Point of Collection Date	Semples and	\$ B B B	} 葉 ♂		
	IARM. I =	220 120	VOCs.	Volatific SVOC,		
	MIN I NA C	GW A V				
	MW S MSD	238 GW 8 x				
9 225	3.450	245	X X X	X X		F50
1	MW- 11/	MES UW O X	X X			V694 3
6 100	MW. 14		X X X			_
		724 aw 8 x			7	
	MW- 18 3/4/2 1	B25 NML GW 8 X		XX	3	
			X X X	X X	4	
	MW-		XXX	X X		
1	MW-	GW B X	XXX			
8 68	730307/6 317/W 7	GW 8 X	X X X	 	HITIAL A FESSI	Elec /Admin
100	753030716 37/06 2	DIY NML W 4 X	 	X X		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			HHXI		THE PROPERTY OF THE	ATION III
	Turneround Information				^{╧╼}┝╌╼╌╏ ╌╌ ╏	
牌团	X 21 Day Standard Approved By:	Date Delivers	sble Information	 		200
18	14 Day	NJ Reduced Co	Minorcial "A"	Co	rements / Remarks	
98	= '	X MIGH		1		
	7 Days EMERGENCY		Water Manager	Federal Express to	18 8012 1953 to=/27//L Time 10	E/E:
386	Other (Days)		Category B	Lab Trip Blank Da	133 117 1133	3/76
	RUSH TAT Is for FAX date	Dink Deliverable 34a4	to Forme	SVOC Analysis by	Mathed Spran	23
	serious proviously approved.	Other (Specify)		Naphthalens only.	Method 82700 SIM for 1	,4 Dioxage and
				J		5.50
	Total Tax	THE RESERVE OF THE PERSON OF T				10.734
	Merfor al. Knin 3/8/16/10	U.S. Francisco By:	Habitation Courier del	bery.		
	Charles by Manager Charles Charl	43 1 Falor	2 /2	Units China:	Parallel By	The state of the s
	Chapter by Single	2	The second state of the second			1
	Units Time:	Control of the	4	Day 154	Flored and Sept	THE RESERVE TO SERVE THE RESERVE THE RESER
		5	On the	Mary control	4	2 2 2 2 2
1			152,154, 156,73	4-	Chin May:	\$2,550
-			1111 61		45	
A STATE OF	A LANGUE & THE TANK THE PARTY OF THE PARTY O		44.56 6	Tr	0	China

JC15883: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC15518

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

6

Location:

BMSMC, Former Tank Farm Area

Humacao, PR

SUMMARY:

Six (6) groundwater samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 –Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

1. Closing calibration verification not included in date package. None of the

results were qualified, professional judgment.

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

April 12, 2016

Date:

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC15883-1MSD

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	92.1	ug/L	1	-	-	Yes
4-Chloro-3-methyl phenol	103	ug/L	1	-	-	Yes
2,4-Dichlorophenol	100	ug/L	1	•	-	Yes
2,4-Dimethylphenol	105	ug/L	1	-	-	Yes
2,4-Dinitrophenol	200	ug/L	1	-	-	Yes
4,6-Dinitro-o-cresol	95.7	ug/L	1	-	-	Yes
2-Methylphenol	94.2	ug/L	1	-	-	Yes
3&4-Methylphenol	93.1	ug/L	1	-	-	Yes
2-Nitrophenol	102	ug/L	1	-	-	Yes
4-Nitrophenol	90	ug/L	1	-	-	Yes
Pentachlorophenol	99.4	ug/L	1	-	-	Yes
Phenol	70.8	ug/L	1	-	-	Yes
2,3,4,6-Tetrachlorophenol	98.6	ug/L	1	-	-	Yes
2,4,5-Trichlorophenol	100	ug/L	1	-	_	Yes
2,4,6-Trichlorophenol	101.0	ug/L	1	-	-	Yes
Acenaphthene	89.3	ug/L	1	2	2	Yes
Acenaphthylene	85.1	ug/L	1		-	Yes
Acetophenone	91.7	ug/L	1	-	-	Yes
Anthracene	95.9	ug/L	1	-	2	Yes
Atrazine	96.2	ug/L	1	-	5	Yes
Benzaldehyde	87.4	ug/L	1	-	2	Yes
Benzo(a)anthracene	101	ug/L	1	-	2	Yes
Benzo(a)pyrene	98.2	ug/L	1	-	~	Yes
Benzo(b)fluoranthene	98.2	ug/L	1	2	2	Yes
Benzo(g,h,i)perylene	88.4	ug/L	1	-		Yes
Benzo(k)fluoranthene	94.5	ug/L	1		-	Yes
4-Bromophenyl phenyl ether	100.0	ug/L	1	-	-	Yes
Butyl benzyl phthalate	110	ug/L	1	-	-	Yes
1,1'-Biphenyl	84.8	ug/L	1	_	-	Yes
2-Chloronaphthalene	82.8	ug/L	1	-		Yes
4-Chloroaniline	54.0	ug/L	1	-	-	Yes
Carbazole	98.7	ug/L	1	-	2	Yes
Caprolactam	55.2	ug/L	1	-	-	Yes
Chrysene	95.7	ug/L	1	-	-	Yes
bis(2-Chloroethoxy)methane	95.4	ug/L	1	-	12%	Yes
bis(2-Chloroethyl)ether	91.6	ug/L	1	-		Yes

METHOD.	02/UD					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
bis (2-Chlorois opropyl) ether	60.6	ug/L	1	-	-	Yes
4-Chlorophenyl phenyl ether	88.1	ug/L	1	-	-	Yes
2,4-Dinitrotoluene	84.5	ug/L	1	-	-	Yes
2,6-Dinitrotoluene	102	ug/L	1	-	-	Yes
3,3'-Dichlorobenzidine	112	ug/L	1	-	-	Yes
1,4-Dioxane	64.7	ug/L	1	-	-	Yes
Dibenzo(a,h)anthracene	95.8	ug/L	1	-	-	Yes
Dibenzofuran	89.5	ug/L	1	-	-	Yes
Di-n-butyl phthalate	106	ug/L	1	-	-	Yes
Di-n-octyl phthalate	93.7	ug/L	1	-	-	Yes
Diethyl phthalate	92.0	ug/L	1	-	-	Yes
Dimethyl phthalate	91.2	ug/L	1	-	-	Yes
bis(2-Ethylhexyl)phthalate	93.0	ug/L	1	-	-	Yes
Fluoranthene	98.3	ug/L	1	-	-	Yes
Fluorene	90.9	ug/L	1	-	-	Yes
Hexachlorobenzene	91.3	ug/L	1	-	-	Yes
Hexachlorobutadiene	78.0	ug/L	1	-	-	Yes
Hexachlorocyclopentadiene	140	ug/L	1	-	-	Yes
Hexachloroethane	78.0	ug/L	1	-	_	Yes
Indeno(1,2,3-cd)pyrene	95.5	ug/L	1	-	-	Yes
Isophorone	103	ug/L	1	-	-	Yes
1-Methylnaphthalene	88.9	ug/L	1	-	-	Yes
2-Methylnaphthalene	88.2	ug/L	1	-	-	Yes
2-Nitroaniline	106	ug/L	1	-	-	Yes
3-Nitroaniline	65.7	ug/L	1	-	-	Yes
4-Nitroaniline	94.2	ug/L	1	-	-	Yes
Naphthalene	86.2	ug/L	1	-	-	Yes
Nitrobenzene	90.3	ug/L	1	-	-	Yes
N-Nitroso-di-n-propylamine	92.2	ug/L	1	-	-	Yes
Nitrosodiphenylamine	96.3	ug/L	1	-	-	Yes
Phenanthrene	93.9	ug/L	1	-	-	Yes
Pyrene	102	ug/L	1	- 0	-	Yes
1,2,4,5-Tetrachlorobenzene	76.0	ug/L	1	-	-	Yes
METHOD:	8270D (SI	IM)				
Naphthalene	1.89	ug/L	1	-	_	Yes
1,4-Dioxane	6.76	ug/L	1	-	-	Yes

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC15883-1MS

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	91.8	ug/L	1	-	-	Yes
4-Chloro-3-methyl phenol	103	ug/L	1	-	-	Yes
2,4-Dichlorophenol	100	ug/L	1	-	•	Yes
2,4-Dimethylphenol	105	ug/L	1	-	-	Yes
2,4-Dinitrophenol	194	ug/L	1	-	-	Yes
4,6-Dinitro-o-cresol	95.4	ug/L	1	-	-	Yes
2-Methylphenol	92.1	ug/L	1	-	-	Yes
3&4-Methylphenol	90.7	ug/L	1	-	-	Yes
2-Nitrophenol	102	ug/L	1	-	•	Yes
4-Nitrophenol	90	ug/L	1	-	-	Yes
Pentachlorophenol	98.8	ug/L	1	-	-	Yes
Phenoi	70.3	ug/L	1	•	-	Yes
2,3,4,6-Tetrachlorophenol	99.5	ug/L	1	-	-	Yes
2,4,5-Trichlorophenol	100	ug/L	1	-	-	Yes
2,4,6-Trichlorophenol	99.4	ug/L	1	-	-	Yes
Acenaphthene	88.9	ug/L	1	-	-	Yes
Acenaphthylene	86.7	ug/L	1	-	-	Yes
Acetophenone	92.1	ug/L	1	-	-	Yes
Anthracene	96.5	ug/L	1	-	-	Yes
Atrazine	98.3	ug/L	1	-	-	Yes
Benzaldehyde	87.1	ug/L	1	-	-	Yes
Benzo(a)anthracene	102	ug/L	1	-	-	Yes
Benzo(a)pyrene	98.8	ug/L	1	-	-	Yes
Benzo(b)fluoranthene	96.5	ug/L	1	-	-	Yes
Benzo(g,h,i)perylene	90.7	ug/L	1	-	-	Yes
Benzo(k)fluoranthene	98.0	ug/L	1	-	-	Yes
4-Bromophenyl phenyl ether	99.7	ug/L	1	-	-	Yes
Butyl benzyl phthalate	110	ug/L	1	-	-	Yes
1,1'-Biphenyl	86.3	ug/L	1	-	-	Yes
2-Chloronaphthalene	81.5	ug/L	1	-	-	Yes
4-Chloroaniline	56.5	ug/L	1	-	-	Yes
Carbazole	99.3	ug/L	1	-	-	Yes
Caprolactam	53.9	ug/L	1	-	-	Yes
Chrysene	96.1	ug/L	1	-	-	Yes
bis(2-Chloroethoxy)methane	94.2	ug/L	1	-	-	Yes
bis(2-Chloroethyl)ether	92.0	ug/L	1	•	-	Yes

METHOD:	82700					
Analyte Name	Result		Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroisopropyl)ether	59.1	ug/L	1	-	-	Yes
4-Chlorophenyl phenyl ether	88.7	ug/L	1	-	-	Yes
2,4-Dinitrotoluene	86.2	ug/L	1	-	-	Yes
2,6-Dinitrotoluene	101	ug/L	1	-	-	Yes
3,3'-Dichlorobenzidine	111	ug/L	1	-	-	Yes
1,4-Dioxane	65.3	ug/L	1	-	-	Yes
Dibenzo(a,h)anthracene	96.9	ug/L	1	-	-	Yes
Dibenzofuran	89.9	ug/L	1	-	-	Yes
Di-n-butyl phthalate	107	ug/L	1	-	-	Yes
Di-n-octyl phthalate	94.6	ug/L	1	-	-	Yes
Diethyl phthalate	92.8	ug/L	1	-	-	Yes
Dimethyl phthalate	92.4	ug/L	1	-	-	Yes
bis(2-Ethylhexyl)phthalate	92.6	ug/L	1	-	-	Yes
Fluoranthene	99.8	ug/L	1	-	-	Yes
Fluorene	92.0	ug/L	1	-	-	Yes
Hexachlorobenzene	91.5	ug/L	1	-	-	Yes
Hexachlorobutadiene	73.5	ug/L	1	-	-	Yes
Hexachlorocyclopentadiene	137	ug/L	1	-	-	Yes
Hexachloroethane	72.6	ug/L	1	-	-	Yes
Indeno(1,2,3-cd)pyrene	98.1	ug/L	1	-	-	Yes
Isophorone	103	ug/L	1	-	-	Yes
1-Methylnaphthaiene	88.3	ug/L	1	-	-	Yes
2-Methylnaphthalene	87.2	ug/L	1	-	_	Yes
2-Nitroaniline	107	ug/L	1	-	_	Yes
3-Nitroaniline	67.8	ug/L	1	-	-	Yes
4-Nitroaniline	98.3	ug/L	1	-	-	Yes
Naphthalene	85.3	ug/L	1	-	-	Yes
Nitrobenzene	91.1	ug/L	1	-	-	Yes
N-Nitroso-di-n-propylamine	91.3	ug/L	1	-	-	Yes
Nitrosodiphenylamine	96.7	ug/L	1	_	-	Yes
Phenanthrene	94.8	ug/L	1	-	-	Yes
Pyrene	102	ug/L	1	-	-	Yes
1,2,4,5-Tetrachlorobenzene	75.3	ug/L	1	•	-	Yes
METHOD:	8270D (S	IM)				
Naphthalene	1.83	ug/L	1	-	-	Yes
1,4-Dioxane	5.87	ug/L	1	-)(-	Yes

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC15883-4

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.4	ug/L	1	_	U	Yes
4-Chloro-3-methyl phenol	5.4	ug/L	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/L	1	-	U	Yes
2,4-Dimethylphenol	5.4	ug/L	1	-	U	Yes
2,4-Dinitrophenol	11	ug/L	1	-	U	Yes
4,6-Dinitro-o-cresol	5.4	ug/L	1	-	U	Yes
2-Methylphenol	2.2	ug/L	1	-	U	Yes
3&4-Methylphenol	2.2	ug/L	1	-	U	Yes
2-Nitrophenol	5.4	ug/L	1	-	U	Yes
4-Nitrophenol	11	ug/L	1	-	U	Yes
Pentachlorophenol	5.4	ug/L	1	-	U	Yes
Phenol	2.2	ug/L	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.4	ug/L	1	-	U	Yes
2,4,5-Trichlorophenol	5.4	ug/L	1	-	Ų	Yes
2,4,6-Trichlorophenol	5.4	ug/L	1	-	U	Yes
Acenaphthene	1.1	ug/L	1	-	U	Yes
Acenaphthylene	1.1	ug/L	1	-	U	Yes
Acetophenone	2.2	ug/L	1	-	U	Yes
Anthracene	1.1	ug/L	1	-	IJ	Yes
Atrazine	1.1	ug/L	1	-	U	Yes
Benzaldehyde	5.4	ug/L	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/L	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/L	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/L	1	-	U	Yes
Benzo(g,h,i)perylene	1.1	ug/L	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/L	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/L	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/L	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/L	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/L	1	-	U	Yes
4-Chloroaniline	5.4	ug/L	1	-	U	Yes
Carbazole	1.1	ug/L	1	-	U	Yes
Caprolactam	2.2	ug/L	1	-	U	Yes
Chrysene	1.1	ug/L	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/L	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/L	1	-	U	Yes

A L. A						
Analyte Name	Result		Dilution Factor	Lab Flag		•
bis(2-Chloroisopropyl)ether	2.2	ug/L	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/L	1	-	U	Yes
2,4-Dinitrotoluene	1.1	ug/L	1	**	U	Yes
2,6-Dinitrotoluene	1.1	ug/L	1	-	U	Yes
3,3'-Dichlorobenzidine	1.1	ug/L	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/L	1	-	U	Yes
Dibenzofuran	5.4	ug/L	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/L	1	-	U	Yes
Di-n-octyl phthalate	2.2	ug/L	1	-	U	Yes
Diethyl phthalate	2.2	ug/L	1	-	U	Yes
Dimethyl phthalate	2.2	ug/L	1	-	U	Yes
bis (2-Ethylhexyl) phthalate	2.2	ug/L	1	-	-	Yes
Fluoranthene	0.44	ug/L	1	J	UJ	Yes
Fluorene	1.1	ug/L	1	-	-	Yes
Hexachlorobenzene	1.1	ug/L	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/L	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/L	1	-	U	Yes
Hexachloroethane	2.2	ug/L	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/L	1	-	U	Yes
Isophorone	2.2	ug/L	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/L	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/L	1	-	IJ	Yes
2-Nitroaniline	5.0	ug/L	1	-	U	Yes
3-Nitroaniline	5.4	ug/L	1	-	U	Yes
4-Nitroaniline	5.4	ug/L	1	-	U	Yes
Naphthalene	1.1	ug/L	1	-	U	Yes
Nitrobenzene	2.2	ug/L	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/L	1	-	U	Yes
Nitrosodiphenylamine	5.4	ug/L	1	-	U	Yes
Phenanthrene	1.1	ug/L	1	-	IJ	Yes
Pyrene	1.1	ug/L	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/L	1	-	U	Yes
METHOD:	8270D (S	IM)				
Naphthalene	0.10	ug/L	1	_	U	Yes
1,4-Dioxane	0.281	ug/L	1	_	_	Yes

Analyte Name

Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC15883-3

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/L	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/L	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/L	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/L	1	-	U	Yes
2,4-Dinitrophenol	10	ug/L	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/L	1	-	Ų	Yes
2-Methylphenol	2.0	ug/L	1	-	U	Yes
3&4-Methylphenol	2.0	ug/L	1	-	U	Yes
2-Nitrophenol	5.0	ug/L	1	-	Ų	Yes
4-Nitrophenol	10	ug/L	1	-	U	Yes
Pentachlorophenol	5.0	ug/L	1	-	U	Yes
Phenol	2.0	ug/L	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/L	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/L	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/L	1	-	U	Yes
Acenaphthene	1.0	ug/L	1	-	U	Yes
Acenaphthylene	1.0	ug/L	1	-	U	Yes
Acetophenone	2.0	ug/L	1	-	U	Yes
Anthracene	1.0	ug/L	1	-	U	Yes
Atrazine	1.0	ug/L	1	-	U	Yes
Benzaldehyde	5.0	ug/L	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/L	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/L	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/L	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/L	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/L	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/L	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/L	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/L	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/L	1	-	U	Yes
4-Chloroaniline	0.90	ug/L	1	J	UJ	Yes
Carbazole	1.0	ug/L	1	-	U	Yes
Caprolactam	2.0	ug/L	1	-	U	Yes
Chrysene	1.0	ug/L	1	-	บ	Yes
bis(2-Chloroethoxy)methane	2.0	ug/L	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/L	1	-	U	Yes

WEITIOD.	02700					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroisopropyl)ether	2.0	ug/L	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/L	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/L	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/L	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/L	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/L	1	-	U	Yes
Dibenzofuran	5.0	ug/L	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/L	1	-	บ	Yes
Di-n-octyl phthalate	2.0	ug/L	1	-	U	Yes
Diethyl phthalate	2.0	ug/L	1	-	U	Yes
Dimethyl phthalate	2.0	ug/L	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/L	1	-	U	Yes
Fluoranthene	1.0	ug/L	1	-	U	Yes
Fluorene	1.0	ug/L	1	-	U	Yes
Hexachlorobenzene	1.0	ug/L	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/L	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/L	1	-	U	Yes
Hexachloroethane	2.0	ug/L	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/L	1	-	U	Yes
Isophorone	2.0	ug/L	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/L	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/L	1	-	U	Yes
2-Nitroaniline	5.0	ug/L	1	-	U	Yes
3-Nitroaniline	5.0	ug/L	1	-	U	Yes
4-Nitroaniline	5.0	ug/L	1	-	U	Yes
Naphthalene	1.0	ug/L	1	-	U	Yes
Nitrobenzene	2.0	ug/L	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/L	1	-	U	Yes
Nitrosodiphenylamine	5.0	ug/L	1	-	U	Yes
Phenanthrene	1.0	ug/L	1	-	บ	Yes
Pyrene	1.0	ug/L	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/L	1	-	U	Yes
METHOD:	8270D (S	IM)				
Naphthalene	0.10	ug/L	1	-	IJ	Yes
1,4-Dioxane	1.76	ug/L	1	_	-	Yes

Analyte Name Result Units Dilution Factor Lab Flag Validation Reportable

Sample ID: JC15883-2

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.2	ug/L	1	-	U	Yes
4-Chloro-3-methyl phenol	5.2	ug/L	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/L	1	-	U	Yes
2,4-Dimethylphenol	5.2	ug/L	1	-	U	Yes
2,4-Dinitrophenol	10	ug/L	1	-	U	Yes
4,6-Dinitro-o-cresol	5.2	ug/L	1	-	U	Yes
2-Methylphenol	2.1	ug/L	1	-	U	Yes
3&4-Methylphenol	2.1	ug/L	1	-	U	Yes
2-Nitrophenol	5.2	ug/L	1	-	U	Yes
4-Nitrophenol	10	ug/L	1	-	U	Yes
Pentachlorophenol	5.2	ug/L	1	-	U	Yes
Phenol	2.1	ug/L	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.2	ug/L	1	-	U	Yes
2,4,5-Trichlorophenol	5.2	ug/L	1	-	U	Yes
2,4,6-Trichlorophenol	5.2	ug/L	1	-	U	Yes
Acenaphthene	1.0	ug/L	1	-	U	Yes
Acenaphthylene	1.0	ug/L	1	-	U	Yes
Acetophenone	2.1	ug/L	1	-	U	Yes
Anthracene	1.0	ug/L	1	-	U	Yes
Atrazine	1.0	ug/L	1	-	U	Yes
Benzaldehyde	5.2	ug/L	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/L	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/L	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/L	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/L	1	•	U	Yes
Benzo(k)fluoranthene	1.0	ug/L	1	-	U	Yes
4-Bromophenyl phenyl ether	2.1	ug/L	1	-	U	Yes
Butyl benzyl phthalate	2.1	ug/L	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/L	1	-	U	Yes
2-Chloronaphthalene	2.1	ug/L	1	-	U	Yes
4-Chloroaniline	5.2	ug/L	1	-	U	Yes
Carbazole	1.0	ug/L	1	-	U	Yes
Caprolactam	2.1	ug/L	1	-	U	Yes
Chrysene	1.0	ug/L	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.1	ug/L	1	-	U	Yes
bis(2-Chloroethyl)ether	2.1	ug/L	1	-	U	Yes

Analyte Name		11	Ditario E. A			
Analyte Name	Result		Dilution Factor	Lab Flag		•
bis(2-Chloroisopropyl)ether	2.1	ug/L	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/L	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/L	1	-	U	Yes
2,6-Dinitrotoluene	1.0	ug/L	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/L	1	-	U	Yes
1,4-Dioxane	12.4	ug/L	1	-	-	Yes
Dibenzo(a,h)anthracene	5.2	ug/L	1	-	U	Yes
Dibenzofuran	2.1	ug/L	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/L	1	-	Ų	Yes
Di-n-octyl phthalate	2.1	ug/L	1	-	U	Yes
Diethyl phthalate	2.1	ug/L	1	-	U	Yes
Dimethyl phthalate	2.1	ug/L	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	1.0	ug/L	1	-	U	Yes
Fluoranthene	1.0	ug/L	1	-	U	Yes
Fluorene	0.54	ug/L	1	J	נט	Yes
Hexachlorobenzene	1.0	ug/L	1	-	U	Yes
Hexachlorobutadiene	10	ug/L	1	-	U	Yes
Hexachlorocyclopentadiene	2.1	ug/L	1	-	U	Yes
Hexachloroethane	1.0	ug/L	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	2.1	ug/L	1	•	U	Yes
Isophorone	1.0	ug/L	1	-	U	Yes
1-Methyinaphthalene	1.0	ug/L	1	-	υ	Yes
2-Methylnaphthalene	5.2	ug/L	1	-	U	Yes
2-Nitroaniline	5.2	ug/L	1	-	U	Yes
3-Nitroaniline	5.2	ug/L	1	-	U	Yes
4-Nitroaniline	1.0	ug/L	1	-	U	Yes
Naphthalene	2.1	ug/L	1	-	U	Yes
Nitrobenzene	2.1	ug/L	1	-	U	Yes
N-Nitroso-di-n-propylamine	5.2	ug/L	1	-	U	Yes
Nitrosodiphenylamine	1.0	ug/L	1	-	U	Yes
Phenanthrene	1.0	ug/L	1	_	U	Yes
Pyrene	2.1	ug/L	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/L	1	-	U	Yes
-						
METHOD:	8270D (S	IM)				
Naphthalene	0.10	ug/L	1	-	U	Yes
						_

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC15883-1

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyta Nama		- خاملا	Dilution Factor	Lob Flo-	Validatia-	Danamakia
Analyte Name	Result		Dilution Factor	Lab Flag		•
2-Chlorophenol	5.2	ug/L	1	-	U	Yes
4-Chloro-3-methyl phenol	5.2	ug/L	1	-	U	Yes
2,4-Dichlorophenol	2.1	ug/L	1	-	U	Yes
2,4-Dimethylphenol	5.2	ug/L	1	-	IJ	Yes
2,4-Dinitrophenol	10	ug/L	1	-	U	Yes
4,6-Dinitro-o-cresol	5.2	ug/L	1	-	U	Yes
2-Methylphenol	2.1	ug/L	1	-	U	Yes
3&4-Methylphenol	2.1	ug/L	1	-	U	Yes
2-Nitrophenol	5.2	ug/L	1	-	U	Yes
4-Nitrophenol	10	ug/L	1	-	U	Yes
Pentachlorophenol	5.2	ug/L	1		U	Yes
Phenol	2.1	ug/L	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.2	ug/L	1		U	Yes
2,4,5-Trichlorophenol	5.2	ug/L	1	(2	U	Yes
2,4,6-Trichlorophenol	5.2	ug/L	1	35	U	Yes
Acenaphthene	1.0	ug/L	1	-	U	Yes
Acenaphthylene	1.0	ug/L	1	1,4	U	Yes
Acetophenone	2.1	ug/L	1		U	Yes
Anthracene	2.1	ug/L	1	-	U	Yes
Atrazine	1.0	ug/L	1	-	U	Yes
Benzaldehyde	5.2	ug/L	1	17.	U	Yes
Benzo(a)anthracene	1.0	ug/L	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/L	1	\approx	U	Yes
Benzo(b)fluoranthene	1.0	ug/L	1	-	U	Yes
Benzo(g,h,i)perylene	1.0	ug/L	1	~	Ų	Yes
Benzo(k)fluoranthene	1.0	ug/L	1	1-	U	Yes
4-Bromophenyl phenyl ether	2.1	ug/L	1	2	U	Yes
Butyl benzyl phthalate	2.1	ug/L	1		U	Yes
1,1'-Biphenyl	1.0	ug/L	1	9	U	Yes
2-Chloronaphthalene	2.1	ug/L	1	2	U	Yes
4-Chloroaniline	5.2	ug/L	1	-	U	Yes
Carbazole	1.0	ug/L	1	-	U	Yes
Caprolactam	2.1	ug/L	1	2	U	Yes
Chrysene	1.0	ug/L	1		IJ	Yes
bis(2-Chloroethoxy)methane	2.1	ug/L	1	2	U	Yes
bis(2-Chloroethyl)ether	2.1	ug/L	1	-	Ū	Yes
• •		4				

WILTIOD.	0270D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
bis(2-Chloroisopropyl)ether	2.1	ug/L	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.1	ug/L	1	-	U	Yes
2,4-Dinitrotoluene	1.0	ug/L	1	-	IJ	Yes
2,6-Dinitrotoluene	1.0	ug/L	1	-	U	Yes
3,3'-Dichlorobenzidine	2.1	ug/L	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/L	1	-	U	Yes
Dibenzofuran	5.2	ug/L	1	-	U	Yes
Di-n-butyl phthalate	2.1	ug/L	1	-	U	Yes
Di-n-octył phthalate	2.1	ug/L	1	-	U	Yes
Diethyl phthalate	2.1	ug/L	1	-	U	Yes
Dimethyl phthalate	2.1	ug/L	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.1	ug/L	1	-	U	Yes
Fluoranthene	1.0	ug/L	1	-	U	Yes
Fluorene	1.0	ug/L	1	-	U	Yes
Hexachlorobenzene	1.0	ug/L	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/L	1	-	บ	Yes
Hexachlorocyclopentadiene	10	ug/L	1	10	U	Yes
Hexachloroethane	2.1	ug/L	1	4	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/L	1	+ :	U	Yes
Isophorone	2.1	ug/L	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/L	1	12	U	Yes
2-Methylnaphthalene	1.0	ug/L	1	17	U	Yes
2-Nitroaniline	5.2	ug/L	1	-	U	Yes
3-Nitroaniline	5.2	ug/L	1	-	U	Yes
4-Nitroaniline	5.2	ug/L	1	7	IJ	Yes
Naphthalene	1.0	ug/L	1	-	U	Yes
Nitrobenzene	2.1	ug/L	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.1	ug/L	1	7	U	Yes
Nitrosodiphenylamine	5.2	ug/L	1	-	U	Yes
Phenanthrene	1.0	ug/L	1		U	Yes
Pyrene	1.0	ug/L	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.1	ug/L	1	-	U	Yes
METHOD:	8 270 D (S	IM)				
Naphthalene	0.10	ug/L	1	-	U	Yes
1,4-Dioxane	5.00	ug/L	1		-	Yes

	Project Number:_JC15883 Date:_March_4,_2016
	Shipping Date:_March_8,_2016 EPA Region:2
REVIEW OF SEMIVOLATILE OF	GANIC PACKAGE
The following guidelines for evaluating volatile required validation actions. This document will assigned judgment to make more informed decision and in users. The sample results were assessed according documents in the following order of precedent Section, SOP HW-35A, July 2015 –Revision 0. Seminary and data validation actions listed on the data reviguidance document, unless otherwise noted.	sist the reviewer in using professiona better serving the needs of the data of the data to USEPA data validation guidance se: EPA Hazardous Waste Supportolatile Data Validation. The QC criteria
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance data included:	
Lab. Project/SDG No.:JC15883 No. of Samples:6_Full_scan/6_SIM	Sample matrix:Groundwater
Trip blank No.:	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_ABN_TCL_list_by_method_SW846- _analyzed_by_method_SW846-8270D_(SIM)	
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect	
Reviewer:Revie	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED		
(8				
9				
T				
2		87-74-81		
Α				
	- V- 0			
		18		
78 _ 78				
	ia ia			

All criteria were met _X	_
Criteria were not met	7
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	рН	ACTION						
All samples extracte	All samples extracted and analyzed within method recommended holding time.									

C	00	er temperature	(Criteria: 4	4 + 2	°C):	6°C

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

·			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤ 7 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment		
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
Aqueous	Yes	≤7 days (for extraction) ≤40 days (for analysis)	No qualification		
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	เม	
	Yes/No	Grossly Exceeded	j	U.J or R	
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment		
Non-Aqueous	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment	
	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification		
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ	
	Yes/No	Grossly Exceeded	J	UJ or R	

	All criteria were met _X
Criteria	were not met see below

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

- _X__ The DFTPP performance results were reviewed and found to be within the specified criteria.
- _X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

List	the	samples	affected:
		2.200	

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:02/29/2016_(SIM)	02/01/16_(SIM)
Instrument ID numbers:GCMS4M	GCMS4P
Matrix/Level:Aqueous/low	Aqueous/low
Date of initial calibration:02/24/16;03/02/16_(Se	can)
Instrument ID numbers:GCMSP	
Matrix/Level:Aqueous/low	

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
	-				
			Initial calibration n	neet the required criteria.	
				2.112.24	
	-				

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	UJ	
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification	

Initial Calibration

Table 2. RRF, %RSD, and %D Acceptance Criteria in Initial Calibration and CCV for Semivolatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
1,4-Dioxane	0.010	40.0	-40.0	= 50.0
Benzaldehyde	0.100	40.0	± 40.0	± 50.0
Phenol	0.080	20.0	± 20.0	± 25.0
Bis(2-chloroethyl)ether	0.100	20.0	±20.0	= 25.0
2-Chlorophenol	0.200	20.0	± 20,0	± 25.0
2-Methylphenol	0.010	20,0	±20.0	= 25.0
3-Methylphenol	0.010	20.0	± 20.0	- 25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	± 25.0	± 50.0
Acetophenone	0.060	20.0	=20,0	=25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	±25.0	= 25.0
Hexachloroethane	0.100	20.0	± 20.0	± 25.0
Nitrobenzene	0.090	20.0	± 20.0	= 25.0
Isophorone	0.100	20.0	= 20.0	= 25.0
2-Nitrophenol	0.060	20.0	± 20.0	- 25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	= 50.0
Bis(2-chloroethoxy)methane	0.080	20.0	= 20.0	= 25.0
2,4-Dichlorophenol	0.060	20,0	± 20,0	±25.0
Naphthalene	0.200	20.0	±20.0	-25.0
4-Chloroaniline	0.010	40.0	= 40.0	- 50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	± 25.0
Caprolactam	0.010	40.0	= 30.0	= 50.0
4-Chloro-3-methylphenol	0.040	20.0	= 20.0	= 25.0
2-Methylnaphthalene	0.100	20,0	= 20.0	=25.0
Hexachlorocyclopentadiene	0.010	40.0	=40.0	= 50.0
2,4,6-Trichlorophenol	0.090	20.0	-20.0	= 25.0
2,4,5-Trichlorophenol	0.100	20.0	= 20.0	= 25.0
1,1'-Biphenyl	0.200	20.0	± 20.0	= 25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ^t	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	=20.0	÷25.0
2-Nitroaniline	0.060	20,0	±25.0	±25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	± 20.0	±25.0
Acenaphthylene	0.400	20.0	=20.0	± 25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	± 20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	= 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20.0	± 20.0	±25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	= 20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	± 25.0
4-Chlorophenyl-phenylether	0.100	20.0	= 20.0	± 25.0
Fluorene	0.200	20,0	± 20.0	±25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	± 30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	± 20.0	±25.0
l lexachlorobenzene	0.050	20.0	± 20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	±40.0	± 50.0
Phenanthrene	0.200	20.0	- 20.0	±25.0
Anthracene	0.200	20.0	± 20.0	±25.0
Carbazole	0.050	20.0	τ 20.0	±25.0
Di-n-butylphthalate	0.500	=20.0	-20.0	±25.0
Fluoranthene	0.100	20,0	± 20.0	±25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	= 25.0	±50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D¹
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	- 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	± 25.0
Chrysene	0.200	20.0	±20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	± 25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	= 40.0	= 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	= 25.0	= 50.0
Benzo(a)pyrene	0.010	20.0	= 20.0	= 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	± 25.0	= 50.0
Benzo(g,h,i)perylene	0.010	20.0	± 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	= 20.0	- 25.0
Acenaphthylene	0.900	20.0	= 20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20.0	± 25.0	± 50.0
Phenanthrene	0.300	20.0	= 25.0	= 50.0
Anthracene	0.400	20.0	= 25.0	±50.0
Fluoranthene	0.400	20.0	± 25.0	= 50.0
Pyrene	0.500	20.0	± 30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	= 25.0	± 50.0
Chyrsene	0.400	20.0	± 25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	±30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	= 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	= 25.0	= 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	= 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	= 50.0	± 50.0	
Deuterated Monitoring C	ompounds				

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
I,4-Dioxane-d ₈	0.010	20.0	± 25.0	±50.0
Phenol-d ₅	0.010	20,0	= 25.0	± 25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	= 20.0	±25.0
2-Chlorophenol-d ₄	0.200	20.0	- 20.0	± 25.0
4-Methylphenol-dx	0.010	20.0	-20.0	± 25.0
4-Chloroaniline-d ₁	0.010	40.0	= 40.0	±50.0
Nitrobenzene-ds	0.050	20.0	± 20.0	± 25.0
2-Nitrophenol-d ₄	0.050	20.0	= 20.0	± 25.0
2,4-Dichlorophenol-d;	0.060	20.0	= 20.0	± 25.0
Dimethy lphthalate-d ₆	0.300	20.0	= 20.0	± 25.0
Acenaphthylene-d _x	0.400	20.0	± 20.0	± 25.0
4-Nitrophenol-d ₄	0.010	40.0	±40.0	±50.0
Fluorene-d ₁₀	0,100	20.0	= 20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0,010	40.0	±30.0	± 50.0
Anthracene-d ₁₀	0,300	20.0	±20.0	± 25.0
Pyrene-d _{in}	0.300	20.0	-25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	= 20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	±25.0	± 50.0
2-Methylnaphthalene-d ₁₀ (SIM)	0.300	20.0	±,20.0	± 25.0

¹ If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were metX
Criteria were not met
and/or see below

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:02/29/16_(SIM)				02/01	1/16: 03/02/16 (SIM) -
Date of initial calibration verification (CCV):_02/29/16			2/29/16 02/01	1/16	
Date of continuing calibration verification (CCV):_03/15/16			Λ· 03/15/16 03/14	1/16	
Date of clo	nsing CC	\/·	-	700/10/1000/1	-
Instrument	t ID aumi	here:	CCMSAM		CMCAD
Matrix/Lav	al:	داعر ۸م	OONOTIVI		
Manazie	/CI	^Ч	ueous/low	Aque	:ous/low
Data affair	tini nation	-4"	00/04/40 00/00	40.60	
Date of ini	vai calior	ation:	02/24/16;_03/02/	/16_(Scan)	
Date of ini	tial calibr	ation	verification (CCV):_02	2/24/16;_03/02/16	
Date of co	ntinuing	calibra	ation verification (CCV	/):03/11/16	
Date of cic	osing CC	V:	-		
Instrument	t ID numl	bers:_	GCMSP_		
Matrix/Lev	el:		_Aqueous/low		
DATE	LAB I	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#			1	AFFECTED
			7.1.0, 70.1.00, 700, 7	79 79 79 79 79 79 79 79 79 79 79 79 79 7	7.1.1.201.25
114! - 1 -			- 111 - 12 - 13		
initial a		_		s meet the required criteria. I	_
	verificati	on inc	cluded in data package	e. No action taken, profession	nal judgment.
					1

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV	Action		
Cineria for Opening CCV	Criteria for Closing CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	1	UJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were met _	_X_	
Criteria were not met		
and/or see below		

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
_No_target_ana	alytes_detected	: 500:00 ETA	anks.	
Field/Equipment	/Trip blank			
DATE ANALYZED	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_analyzed_wi	th_this_data_package	

All criteria were met _	X
Criteria were not met	
and/or see below	500

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
		< CRQL	Report at CRQL and qualify as non-detect (U)
Method,	≥ CRQL	≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	<u> </u>				
	<u> </u>				

All criteria were metX
Criteria were not mel
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

Table 7. DMC Actions for Semivolatile Analysis

Criteria	Action		
Criteria	Detect	Non-detect	
%R < 10% (excluding DMCs with 10% as a lower acceptance limit)	J-	R	
10% ≤ %R (excluding DMCs with 10% as a lower acceptance limit) < Lower Acceptance Limit	J_{π}	UJ	
Lower Acceptance limit $\leq \%R \leq Upper$ Acceptance Limit	No qualification	No qualification	
%R > Upper Acceptance Limit	J+	No qualification	

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Matrix:___Groundwater_____

SAMPLE ID SURROGATE COMPOUND ACTION

_DMCs_meet_the_required_criteria._Non-deuterated_surrogates_added_to_the_samples_____
_within_laboratory_recovery_limits._____

Table 8. Semivolatile DMCs and the Associated Target Analytes

1,4-Dioxane-d ₈ (DMC-1)	Phenol-ds (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)
1.4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether
1,4-1310xane	Phenol	1 '
	rnenoi	2,2'-Oxybis(1-chloropropane)
		Bis(2-chloroethoxy)methane
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)
2-Chlorophenol	2-Methylphenol	4-Chloroaniline
	3-Methylphenol	Hexachlorocyclopentadiene
	4-Methylphenol	Dichlorobenzidine
	2,4-Dimethylphenol	
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichtorophenol-d3(DMC-9)
Acetophenone	Isophorone	2,4-Dichlorophenol
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene
Hexachloroethane		Hexachlorocyclopentadiene
Nitrobenzene		4-Chloro-3-methylphenol
2,6-Dinitrotoluene		2,4,6-Trichlorophenol
2,4-Dinitrotoluene		2,4,5-Trichlorophenol
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene
(C) E1		*Pentachlorophenol
		2,3,4,6-Tetrachlorophenol
Dimethylphthalate-d _• (DMC-10)	Acenaphthylene-ds (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)
Caprolactam	*Naphthalene	2-Nitroaniline
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol
Diethylphthalate	*Acenaphthylene	4-Nitrophenol
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline
Butylbenzylphthalate	,	200
Bis(2-ethylhexyl) phthalate		
Di-n-octylphthalate		

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether Carbazole	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene *Pyrene	3,3'-Dichlorobenzidine *Benzo(b)fluoranthene	
*Benzo(a)anthracene *Chrysene	*Benzo(k)fluoranthene *Benzo(a)pyrene	
	*Indeno(1,2,3-ed)pyrene *Dibenzo(a,h)anthracene *Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (FAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met _X
Criteria were not met
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the

Notify the Contract Laboratory COR if a field or trip blank was used for the

MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method quaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC15883-1 Sample ID:JC15883-1_(SIM)				Matrix/Level:_Groundwater Matrix/Level:_Groundwater	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
			- ESTORE -		

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

If QC limits are not available, use limits of 70 – 130 %.

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts meet the required criteria.

Action:

- If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action			
Criteria	Detect	Non-detect		
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	v or mid-point			
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+ UJ			
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification No qualification			
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J- No qualificati			
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R R			
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification No qualifica			

		All criteria were metX Criteria were not met and/or see below
TARGET CO	MPOUND IDENTIFICATION	
Criteria:		
	ve Retention Times (RRTs) of reported cor T [opening Continuing Calibration Verificatio on].	
List compoun	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
spectrum fron	of the sample compound and a current labo n the associated calibration standard (openinust match according to the following criteria: All ions present in the standard mass spect 10% must be present in the sample spect	ng CCV or mid-point standard from initial extrum at a relative intensity greater than
b.	The relative intensities of these ions a standard and sample spectra (e.g., for a standard spectrum, the corresponding standard spectrum).	must agree within $\pm 20\%$ between the in ion with an abundance of 50% in the
C.	lons present at greater than 10% in the state standard spectrum, must be evaluate spectral interpretation.	
List compound	ds not meeting the criteria described above:	
Sample ID	Compounds	Actions
Identified co		

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- 3. Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

	ISt	ICs
L		

Sample ID	Compound	Sample ID Compound			

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were metX
Criteria were not mel
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Ac	Action				
	Detects	Non-detects				
%Solids < 10.0%	Use professional judgment	Use professional judgment				
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment				
%Solids > 30.0%	No qualification	No qualification				

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID:_	JC15883	-3 Analyte:1,4-Dioxane	_ RF:_0.368
[]	= =	(49019)(4)/(303650)(0.368) 1.75 ppm Ok	

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
		
<u>, </u>		

				Crite	ntena were metN/A na were not met or see below
FIELD DUPLICAT	TE PRECIS	SION			
Sample II	Ds:			Matrix:	
analyses measure laboratory duplicates will have a identical field dup The project QAPF Suggested criteri	e both field ates which a greater va- licate samp should be a: if large	and lab precisionly laborate than wolles. reviewed for RPD (> 50 %	and analyzed as an indision; therefore, the resulting performance. It is vater matrices due to differ project-specific information is observed, confirminate are <5 SQL, the R	ults may have also expecte ficulties asso ation. identification	e more variability than ed that soil duplicate ociated with collecting of the samples and
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			part of this data packa		

All criteria were met _X
Criteria were not mel
and/or see below

OTHER ISSUES

A.	System Performan	се	
List sar	mples qualified base	ed on the degradation of syste	m performance during simple analysis:
Sample	e iD	Comments	Actions
Action:			
degrad	ed during sample a		determined that system performance has Laboratory Program COR any action as a icantly affected the data.
В.	Overall Assessmen	t of Data	
List sar	mples qualified base	d on other issues:	
Sample	e ID	Comments	Actions
		quired_the_need_to_qualify_t oses	he_dataResults_are_valid_and_can_be

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).
- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC15883

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8260C

Number of Samples:

7

Location:

BMSMC, Former Tank Farm Area

Humacao, PR

SUMMARY:

Six (6) groundwater samples and one trip blank were analyzed for the VOA TCL list following method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-33A, Revision 0, June, 2015. SOM02.2. Low/Medium Volatile Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

1. No evidence of sample pH preservation. No action taken, samples analyzed

within 7 days of collection.

2. Closing calibration verification not included in date package. None of the

results were qualified, professional judgment.

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

April 12, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC15883-1

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lah Elag	Validation	Reportable	
Acetone	10	ug/L	1.0	-	U	Yes	
Benzene	0.5	ug/L	1.0	_	U	Yes	
Benzyl Chloride	5.0	ug/L	1.0	_	U	Yes	
Bromochloromethane	1.0	ug/L	1.0	_	U	Yes	
Bromodichloromethane	1.0	ug/L	1.0	_	U	Yes	
Bromoform	2.0	ug/L	1.0	_	U	Yes	
Bromomethane	2.0	ug/L	1.0	_	U	Yes	
Butanone (MEK)	10	ug/L	1.0	_	U		
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes	
Carbon tetrachloride	1.0	_		•		Yes	
Chlorobenzene		ug/L	1.0	-	U	Yes	
Chloroethane	1.0	ug/L	1.0	-	Ωĵ	Yes	
	1.0	ug/L	1.0	-	U	Yes	
Chloroform	1.0	ug/L	1.0	-	U	Yes	
Chloromethane	5.0	ug/L	1.0	-	U	Yes	
Cyclohexane	0.70	ug/L	1.0	J	UJ	Yes	
1,2-Dibromo-3-chloropropane	1.0	ug/L	1.0	- :	U	Yes	
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dibromoethane	1.0	ug/L	1.0	-	U	Yes	
1,2-Dichlorobenzene	0.31	ug/L	1.0	J	UJ	Yes	
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes	
1,4-Dichlorobenzene	1.0	ug/L	1.0	_	U	Yes	
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes	
1,1-Dichloroethane	1.0	ug/L	1.0	-	Ū	Yes	
1,2-Dichloroethane	1.0	ug/L	1.0	_	Ü	Yes	
		-			_	,	

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	5.0	ug/L	1.0	-	U	Yes
Isopropylbenzene	30.0	ug/L	1.0	-	-	Yes
p-Isopropyltoluene	2.0	ug/L	1.0	-	U	Yes
Methyl Acetate	5.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	0.56	ug/L	1.0	J	UJ	Yes
Methyl Tert Butyl Ether	34.9	ug/L	1.0	-	-	Yes
4-Methyl-2-pentanone(MIBK)	2.0	ug/L	1.0	-	U	Yes
Methylene chloride	2.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	4.5	ug/L	1.0	J	UJ	Yes
Toluene	1.0	ug/L	1.0	-	U	Yes
1,2,3-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trimethylbenzene	2.0	ug/L	1.0	-	U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	0.41	ug/L	1.0	J	UJ	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Xylene (total)	0.41	ug/L	1.0	J	LU	Yes

Sample ID: JC15883-2

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units Dil	ution Factor	Lab Flag	Validation	Reportable
Acetone	10	ug/L	1.0	-	U	Yes
Benzene	0.5	ug/L	1.0	-	U	Yes
Benzyl Chloride	5.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	2.0	ug/L	1.0	-	U	Yes
Bromomethane	2.0	ug/L	1.0	-	U	Yes
Butanone (MEK)	10	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	UJ	Yes
Chloroethane	1.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Chloromethane	5.0	ug/L	1.0	-	U	Yes
Cyclohexane	2.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes

Analyte Name	Result	Units D	Dilution Factor	Lab Flag	Validation	Reportable
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	5.0	ug/L	1.0	-	U	Yes
Isopropylbenzene	17.7	ug/L	1.0	-	-	Yes
p-Isopropyltoluene	2.0	ug/L	1.0	-	U	Yes
Methyl Acetate	5.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	0.26	ug/L	1.0	J	UJ	Yes
Methyl Tert Butyl Ether	3.8	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	2.0	ug/L	1.0	-	U	Yes
Methylene chloride	2.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	10	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0	-	U	Yes
1,2,3-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trimethylbenzene	2.0	ug/L	1.0	-	U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes

	Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
m,p-Xylene		0.76	ug/L	1.0	J	UJ	Yes
o-Xylene		0.18	ug/L	1.0	1	UJ	Yes
Xylene (total)		0.94	ug/L	_1.0	J	UJ	Yes

Sample ID: JC15883-3

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016

Matrix: Groundwater

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Acetone	10	ug/L	1.0	-	U	Yes
Benzene	0.50	ug/L	1.0	-	U	Yes
Benzyl Chloride	5.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	2.0	ug/L	1.0	-	U	Yes
Bromomethane	2.0	ug/L	1.0	-	U	Yes
Butanone (MEK)	10	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	1.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Chloromethane	5.0	ug/L	1.0	-	U	Yes
Cyclohexane	2.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromoethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	**	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	5.0	ug/L	1.0	-	U	Yes
Isopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-isopropyitoluene	2.0	ug/L	1.0	-	U	Yes
Methyl Acetate	5.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	UJ	Yes
Methylene chloride	2.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	-	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	10	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0	~	U	Yes
1,2,3-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	1.0	ug/L	1.0	~	U	Yes
1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
1,2,4-Trimethylbenzene	2.0	ug/L	1.0	-	U	Yes
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes
m,p-Xylene	1.0	ug/L	1.0	-	U	Yes
o-Xylene	1.0	ug/L	1.0	-	U	Yes
Xylene (total)	206	ug/L	1.0	-	U	Yes

Sample ID: JC15883-4

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Acetone	10	ug/L	1.0	-	U	Yes
Benzene	0.50	ug/L	1.0	-	U	Yes
Benzyl Chloride	5.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	2.0	ug/L	1.0	-	U	Yes
Bromomethane	2.0	ug/L	1.0	•	U	Yes
Butanone (MEK)	10	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	0.90	ug/L	1.0	J	UJ	Yes
Chloroethane	1.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Chloromethane	5.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.5	ug/L	1.0	J	UJ	Yes
1,2-Dibromo-3-chloropropane	1.0	ug/L	1.0	-	U	Yes
Dibromochloromethane	1.0	ug/L	1.0	-	U	Yes
1.2-Dibromoethane	1.0	ue/L	1.0	-	U	Yes

	Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
	1,2-Dichlorobenzene	0.68	ug/L	1.0	J	UJ	Yes
	1,3-Dichlorobenzene	1.0	ug/L	1.0	~	U	Yes
	1,4-Dichlorobenzene	0.33	ug/L	1.0	J	IJ	Yes
	Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
	1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
	1,2-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
	1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
	cis-1,2-Dichloroethene	0.31	ug/L	1.0	J	UJ	Yes
	trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
	1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
	cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
	trans-1,3-Dichloropropene	1.0	ug/L	1.0	_	U	Yes
	Ethylbenzene	1.5	ug/L	1.0	-	-	Yes
	Freon 113	1.0	ug/L	1.0	-	U	Yes
	2-Hexanone	5.0	ug/L	1.0	-	U	Yes
	Isopropylbenzene	7.5	ug/L	1.0	-	-	Yes
	p-Isopropyltoluene	2.0	ug/L	1.0	-	U	Yes
	Methyl Acetate	5.0	ug/L	1.0	-	U	Yes
	Methylcyclohexane	4.0	ug/L	1.0	-	U	Yes
	Methyl Tert Butyl Ether	0.34	ug/L	1.0	J	UJ	Yes
	4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
	Methylene chloride	2.0	ug/L	1.0	-	U	Yes
	Styrene	1.0	ug/L	1.0	-	U	Yes
	1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
	Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
	Tetrahydrofuran	10	ug/L	1.0	-	U	Yes
	Toluene	0.40	ug/L	1.0	J	UJ	Yes
	1,2,3-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
	1,2,4-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
	1,1,1-Trichloroethane	1.0	ug/L	1.0	-	U	Yes
8 2	1,1,2-Trichloroethane	1.0	ug/L	1.0	-	U	Yes

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Trichloroethene	1.0	ug/L	1.0	-	U	Yes
Trichlorofluoromethane	2.0	ug/L	1.0	-	U	Yes
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes
Vinyl chloride	0.26	ug/L	1.0	J	UJ	Yes
m,p-Xylene	3.8	ug/L	1.0	-	-	Yes
o-Xylene	0.91	ug/L	1.0	J	UJ	Yes
Xylene (total)	4.7	ug/L	1.0	-	-	Yes

Sample ID: JC15883-5

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016

Matrix: Groundwater

Analyte Name	Result	Units [Dilution Factor	Lab Flag	Validation	Reportable
Acetone	10	ug/L	1.0	-	U	Yes
Benzene	0.50	ug/L	1.0	-	U	Yes
Benzyl Chloride	5.0	ug/L	1.0	-	U	Yes
Bromochloromethane	1.0	ug/L	1.0	-	U	Yes
Bromodichloromethane	1.0	ug/L	1.0	-	U	Yes
Bromoform	2.0	ug/L	1.0	-	U	Yes
Bromomethane	2.0	ug/L	1.0	-	U	Yes
Butanone (MEK)	10	ug/L	1.0	-	U	Yes
Carbon disulfide	2.0	ug/L	1.0	-	U	Yes
Carbon tetrachloride	1.0	ug/L	1.0	-	U	Yes
Chlorobenzene	1.0	ug/L	1.0	-	U	Yes
Chloroethane	1.0	ug/L	1.0	-	U	Yes
Chloroform	1.0	ug/L	1.0	-	U	Yes
Chloromethane	5.0	ug/L	1.0	-	U	Yes
Cyclohexane	1.0	ug/L	1.0	-	U	Yes
1,2-Dibromo-3-chloropropane	1.0	ug/L	1.0	_	U	Yes

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Dibromochloromethane	1.0	ug/L	1.0	_	U	Yes
1,2-Dibromoethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,3-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,4-Dichlorobenzene	1.0	ug/L	1.0	-	U	Yes
Dichlorodifluoromethane	2.0	ug/L	1.0	-	U	Yes
1,1-Dichloroethane	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloroethane	1.0	ug/L	1.0	~	U	Yes
1,1-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
cis-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
trans-1,2-Dichloroethene	1.0	ug/L	1.0	-	U	Yes
1,2-Dichloropropane	1.0	ug/L	1.0	-	U	Yes
cis-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
trans-1,3-Dichloropropene	1.0	ug/L	1.0	-	U	Yes
Ethylbenzene	1.0	ug/L	1.0	-	U	Yes
Freon 113	1.0	ug/L	1.0	-	U	Yes
2-Hexanone	5.0	ug/L	1.0	-	U	Yes
lsopropylbenzene	1.0	ug/L	1.0	-	U	Yes
p-Isopropyltoluene	2.0	ug/L	1.0	-	U	Yes
Methyl Acetate	5.0	ug/L	1.0	-	U	Yes
Methylcyclohexane	5.0	ug/L	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/L	1.0	-	U	Yes
4-Methyl-2-pentanone(MIBK)	5.0	ug/L	1.0	-	U	Yes
Methylene chloride	2.0	ug/L	1.0	-	U	Yes
Styrene	1.0	ug/L	1.0	~	U	Yes
1,1,2,2-Tetrachloroethane	1.0	ug/L	1.0	-	U	Yes
Tetrachloroethene	1.0	ug/L	1.0	-	U	Yes
Tetrahydrofuran	10	ug/L	1.0	-	U	Yes
Toluene	1.0	ug/L	1.0	-	U	Yes
1,2,3-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes
1,2,4-Trichlorobenzene	1.0	ug/L	1.0	-	U	Yes

Analyte Name	Result	Units Dil	ution Factor	Lab Flag	Validation	Reportable	
1,1,1-Trichloroethane	1.0	ug/L	1.0	•	U	Yes	
1,1,2-Trichloroethane	1.0	ug/L 📶	1.0	-	U	Yes	
Trichloroethene	1.0	ug/L	1.0	-	U	Yes	
Trichlorofluoromethane	2.0	ug/L	1.0	-	Ų	Yes	
1,2,4-Trimethylbenzene	1.0	ug/L	1.0	-	U	Yes	
Vinyl chloride	1.0	ug/L	1.0	-	U	Yes	
m,p-Xylene	1.0	ug/L	1.0	•	U	Yes	
o-Xylene	1.0	ug/L	1.0	-	U	Yes	
Xylene (total)	1.0	ug/L	1.0	-	U	Yes	

Sample ID: JC15883-1MS

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable	
Acetone	41.6	ug/L	1.0	-	-	Yes	
Benzene	46.8	ug/L	1.0	-	_	Yes	
Benzyl Chloride	47.4	ug/L	1.0	-	•	Yes	
Bromochloromethane	44.4	ug/L	1.0	-	-	Yes	
Bromodichloromethane	44.7	ug/L	1.0	-	-	Yes	
Bromoform	45.3	ug/L	1.0	-	-	Yes	
Bromomethane	47.8	ug/L	1.0	-	-	Yes	
Butanone (MEK)	47.7	ug/L	1.0	-	-	Yes	
Carbon disulfide	46.7	ug/L	1.0	•	-	Yes	
Carbon tetrachloride	45.7	ug/L	1.0	-	-	Yes	
Chlorobenzene	48.3	ug/L	1.0	-	-	Yes	
Chloroethane	43.4	ug/L	1.0	-	-	Yes	
Chloroform	43.9	ug/L	1.0	-	-	Yes	
Chloromethane	36.1	ue/I	1.0	-	-	Vac	

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Cyclohexane	54.6	ug/L	1.0	-	-	Yes
1,2-Dibromo-3-chloropropane	48.4	ug/L	1.0	-	-	Yes
Dibromochloromethane	47.0	ug/L	1.0	-	•	Yes
1,2-Dibromoethane	45.4	ug/L	1.0	-	-	Yes
1,2-Dichlorobenzene	48.6	ug/L	1.0	-	-	Yes
1,3-Dichlorobenzene	47.9	ug/L	1.0	-	-	Yes
1,4-Dichlorobenzene	47.0	ug/L	1.0	-	-	Yes
Dichlorodifluoromethane	42.7	ug/L	1.0	-	-	Yes
1,1-Dichloroethane	44.0	ug/L	1.0	-	-	Yes
1,2-Dichloroethane	43.5	ug/L	1.0	-	-	Yes
1,1-Dichloroethene	48.7	ug/L	1.0	-	-	Yes
cis-1,2-Dichloroethene	46.0	ug/L	1.0	-	-	Yes
trans-1,2-Dichloroethene	44.6	ug/L	1.0	-	_	Yes
1,2-Dichloropropane	44.0	ug/L	1.0	-	-	Yes
cis-1,3-Dichloropropene	48.7	ug/L	1.0	-	-	Yes
trans-1,3-Dichloropropene	45.6	ug/L	1.0	-	-	Yes
Ethylbenzene	52.5	ug/L	1.0	~	-	Yes
Freon 113	46.2	ug/L	1.0	-	-	Yes
2-Hexanone	53.4	ug/L	1.0	-	-	Yes
Isopropylbenzene	95.3	ug/L	1.0	-	-	Yes
p-Isopropyltoluene	57.5	ug/L	1.0	-	-	Yes
Methyl Acetate	33.4	ug/L	1.0	-	-	Yes
Methylcyclohexane	53.5	ug/L	1.0	-	-	Yes
Methyl Tert Butyl Ether	122	ug/L	1.0	-	-	Yes
4-Methyl-2-pentanone(MIBK)	54.4	ug/L	1.0	-	-	Yes
Methylene chloride	42.1	ug/L	1.0	-	-	Yes
Styrene	57.0	ug/L	1.0	-	-	Yes
1,1,2,2-Tetrachloroethane	43.7	ug/L	1.0	-	-	Yes
Tetrachloroethene	51.3	ug/L	1.0	~	-	Yes
Tetrahydrofuran	48.7	ug/L	1.0	-	-	Yes
Toluene	47.8	ug/L	1.0	-	-	Yes

Analyte Name	Result	Units Dil	ution Factor	Lab Flag	Validation	Reportable
1,2,3-Trichlorobenzene	52.4	ug/L	1.0	-	-	Yes
1,2,4-Trichlorobenzene	53.6	ug/L	1.0	-	-	Yes
1,1,1-Trichloroethane	46.7	ug/L	1.0	-	-	Yes
1,1,2-Trichloroethane	43.4	ug/L	1.0	•	•	Yes
Trichloroethene	47.1	ug/L	1.0	-	-	Yes
Trichlorofluoromethane	44.1	ug/L	1.0	-	-	Yes
1,2,4-Trimethylbenzene	55.1	ug/L	1.0	-	-	Yes
Vinyl chloride	37.4	ug/L	1.0	-	-	Yes
m,p-Xylene	111	ug/L	1.0	-	-	Yes
o-Xylene	57.3	ug/L	1.0	-	-	Yes
Xylene (total)	168	ug/L	1.0	-	-	Yes

Sample ID: JC15883-1MSD

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

Analyte Name	Result	Units Di	ution Factor	Lab Flag	Validation	Reportable	
Acetone	41.8	ug/L	1.0	-	-	Yes	
Benzene	47.8	ug/L	1.0	•	•	Yes	
Benzyl Chloride	47.6	ug/L	1.0	-	-	Yes	
Bromochloromethane	46.0	ug/L	1.0	-	-	Yes	
Bromodichloromethane	45.2	ug/L	1.0	-	-	Yes	
Bromoform	46.6	ug/L	1.0	-	-	Yes	
Bromomethane	50.2	ug/L	1.0	-	-	Yes	
Butanone (MEK)	49.2	ug/L	1.0	-	-	Yes	
Carbon disulfide	48.4	ug/L	1.0	-	-	Yes	
Carbon tetrachloride	46.9	ug/L	1.0	-	-	Yes	
Chlorobenzene	49.6	ug/L	1.0	-	-	Yes	
Chloroethane	45.7	ug/L	1.0	_	_	Yes	

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Chloroform	45.2	ug/L	1.0	÷.	-	Yes
Chloromethane	37.1	ug/L	1.0	-	-	Yes
Cyclohexane	55.4	ug/L	1.0	-	-	Yes
1,2-Dibromo-3-chloropropane	50.3	ug/L	1.0	-	-	Yes
Dibromochloromethane	48.0	ug/L	1.0	-	-	Yes
1,2-Dibromoethane	47.1	ug/L	1.0	-	-	Yes
1,2-Dichlorobenzene	49.7	ug/L	1.0	-	-	Yes
1,3-Dichlorobenzene	48.9	ug/L	1.0	-	-	Yes
1,4-Dichlorobenzene	47.8	ug/L	1.0	-	-	Yes
Dichlorodifluoromethane	44.5	ug/L	1.0	-	-	Yes
1,1-Dichloroethane	45.7	ug/L	1.0	-	-	Yes
1,2-Dichloroethane	44.9	ug/L	1.0	-	-	Yes
1,1-Dichloroethene	51.1	ug/L	1.0	-	-	Yes
cis-1,2-Dichloroethene	47.5	ug/L	1.0	-	-	Yes
trans-1,2-Dichloroethene	45.7	ug/L	1.0	-	-	Yes
1,2-Dichloropropane	45.0	ug/L	1.0	-	-	Yes
cis-1,3-Dichloropropene	50.3	ug/L	1.0	-	-	Yes
trans-1,3-Dichloropropene	46.7	ug/L	1.0	-	-	Yes
Ethylbenzene	54.2	ug/L	1.0	-	-	Yes
Freon 113	47.2	ug/L	1.0	-	-	Yes
2-Hexanone	55.0	ug/L	1.0	-	-	Yes
Isopropylbenzene	97.4	ug/L	1.0	-	-	Yes
p-Isopropyltoluene	58.5	ug/L	1.0	-	-	Yes
Methyl Acetate	33.5	ug/L	1.0	-	-	Yes
Methylcyclohexane	54.1	ug/L	1.0	-	-	Yes
Methyl Tert Butyl Ether	126	ug/L	1.0	-	-	Yes
4-Methyl-2-pentanone(MIBK)	55.6	ug/L	1.0	-	-	Yes
Methylene chloride	44.0	ug/L	1.0	-	-	Yes
Styrene	58.3	ug/L	1.0	-	-	Yes
1,1,2,2-Tetrachloroethane	44.8	ug/L	1.0	496	-	Yes
Tetrachloroethene	51.8	ug/L	1.0	-	-	Yes

Analyte Name	Result	Units D	ilution Factor	Lab Flag	Validation	Reportable
Tetrahydrofuran	51.1	ug/L	1.0	-	-	Yes
Toluene	48.7	ug/L	1.0	-	-	Yes
1,2,3-Trichlorobenzene	53.7	ug/L	1.0	-		Yes
1,2,4-Trichlorobenzene	54.7	ug/L	1.0	-	-	Yes
1,1,1-Trichloroethane	48.1	ug/L	1.0	-	•	Yes
1,1,2-Trichloroethane	44.5	ug/L	1.0	-	-	Yes
Trichloroethene	48.1	ug/L	1.0	-	-	Yes
Trichlorofluoromethane	45.8	ug/L	1.0	-	-	Yes
1,2,4-Trimethylbenzene	56.1	ug/L	1.0	-	-	Yes
Vinyl chloride	38.7	ug/L	1.0	-	-	Yes
m,p-Xylene	113	ug/L	1.0	-	-	Yes
o-Xylene	58.6	ug/L	1.0	-	_	Yes
Xylene (total)	172	ug/L	1.0	-	-	Yes

Project Number:_JC15883
Date:March_4,_2016
Shipping date:March_8,_2016
EPA Region:2

REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

otnerwise noted.	
The hardcopied (laboratory name)Accutest been reviewed and the quality control and performance VOCs included:	
Lab. Project/SDG No.:JC15883 No. of Samples:7	Sample matrix:Groundwater
Trip blank No.:JC15883-5	
X Holding TimesX GC/MS TuningX Internal Standard PerformanceX Blanks	X Laboratory Control Spikes X Field Duplicates X Calibrations X Compound Identifications X Compound Quantitation X Quantitation Limits
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Date: April_11, 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		_
= \$2		
2 (2.00) (1.00)		
	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·		
		TG
200 200 2000 2000		

All criteria were met _	_X	
Criteria were not met		
and/or see below		

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pH	ACTION
				e temperature preservation No action taken, samples
analyzed within 7 o		or sample pri prese	i vauon.	NO action taken, samples
1			I	1

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 6 °C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, T = 4° C \pm 2° C), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (UJ) and non-detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved (T < -7°C or T = 4°C \pm 2°C and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

			Action		
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤ 7 davs	No q	ualification	
\	No	> 7 days	J	R	
Aqueous	Yes	≤ 14 days	No qualification		
	Yes	> 14 days	J	R	
	No	≤ 14 days	J	Professional judgment, UJ or R	
Non-Aqueous	Yes	≤ 14 days	No q	ualification	
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No q	ualification	
TCLP/SPLP	No	> 14 days	J	R	

TCLP/SPLP	holding time		No qualification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	the 14-day technical R		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification		
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R	
Sample temperature outside 4°C ± 2°C upon receipt at the laboratory		Use profess	ional judgment	
Holding times g	rossly exceeded	J	R	

	All criteria were met	_X_
Criteria we	re not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X__ The BFB performance results were reviewed and found to be within the specified criteria.
__X__ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound.			
List	the	samples	affected:
If mass calibratio	n is in error, all associated o	data are rejected	

All criteria were melX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:03/03/16	_
Dates of continuing (initial) calibration:_03/03/16	
Dates of continuing calibration:03/11/16	_
Instrument ID numbers:GCMS3D	_
Matrix/Level:Aqueous/low	_

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
Vii					
Initial antil			808. at tare		//
					riteria. Closing calibration
			ed in data package. No		

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	=30.0	±50.0
Vinyl chloride	0.010	20.0	=30.0	±50.0
Bromomethane	0.010	40.0		±50.0 ±50.0
Chloroethane	0.010	40.0	±30.0 ±25.0	±50.0
Trichlorofluoromethane				
1.1-Dichloroethene	0.010	40.0	=30.0	±50.0
1.1.2-Trichloro-1.2.2-trifluoroethane		20.0	±20.0	±25,0
	0.050	25.0	=25.0	±50.0
Acetone	0.010	40.0	=40.0	±50.0
Carbon disulfide	0.100	20.0	=25.0	±25.0
Methyl acetate	0.010	40.0	=40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1.2-Dichloroethene	0.100	20.0	=20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1.1-Dichloroethane	0.300	20.0	=20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	=20.0	±25.0
2-Butanone	0.010	40.0	=40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	=20.0	±25.0
1.1.1-Trichloroethane	0.050	20.0	=25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50,0
Carbon tetrachloride	0.100	20.0	=25.0	±25.0
Benzene	0.200	20.0	=20.0	±25.0
1.2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	=20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1.2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	=30.0	±50.0
Toluene	0.300	20.0	=20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	=20.0	±25.0
1.1.2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	=20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	=20.0	±25.0
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	=20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
m.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	=20.0	±25,0
Styrene	0.200	20.0	=20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1.1.2.2-Tetrachloroethane	0.200	20.0	±25.0	±25,0
1.3-Dichlorobenzene	0.500	20.0	±20.0	±25,0
1.4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1.2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50,0
1.2.4-Trichlorobenzene	0.400	20.0	=30.0	±50.0
1.2.3-Trichlorobenzene	0.400	25.0	=30.0	±50.0
Deuterated Monitoring Compound				
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene-d2	0.050	20.0	±25,0	±25.0
2-Butanone-ds	0.010	40.0	=40.0	±50,0
Chloroform-d	0.300	20.0	=20.0	±25.0
1.2-Dichloroethane-d4	0.060	20.0	=25.0	±25.0
Benzene-de	0.300	20.0	±20.0	±25.0
1.2-Dichloropropane-de	0.200	20.0	±20.0	±25.0
Toluene-ds	0,300	20,0	=20.0	±25.0
trans-1.3-Dichloropropene-d4	0.200	20.0	±20.0	±25,0
2-Hexanone-ds	0.010	40.0	=40.0	±50.0
1.1.2.2-Tetrachloroethane-da	0.200	20.0	±25.0	±25.0
1.2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25,0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional judgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis - Summary

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	, UJ	
RRF < Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
% oRSD > Maximum % oRSD in Table for target analyte	J	Use professional judgment	
° •RSD ⊆ Maximum ° •RSD in Table for target analyte	No qualification	No qualification	

All criteria were met _X
Criteria were not met
and/or see below

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	Action		
CCV	Closing CCV	Detect	Non-detect	
CCV not performed at required frequency	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
°6D outside the Opening Maximum °6D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table for target analyte	j	UJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table—for target analyte	No qualification	No qualification	

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_	-		ζS	
Field/Equipmer	nt/Trip blank			
	inks are present	t, the data revie	wer should evaluate this	data in a similar fashion as
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
•	•		nkNo_field/equipment_t	planks_analyzed_as_part_
				200

All criteria were metX	_
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL *	< CRQL*	Report CRQL value with a U
	CKQL.	≥CRQL*	No qualification required
Method.		< CRQL*	Report CRQL value with a U
Storage, Field,	> CRQL *	≥ CRQL** and ≤	Report blank value for sample
Trip.		blank concentration	concentration with a U
TCLP/SPLP		≥ CRQL** and >	No qualification required
LEB.		blank concentration	No quantication required
Instrument**	= CRQL*	≤ CRQL*	Report CRQL value with a U
		≥ CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	contamination	Detects	concentration with a U

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

Notes:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed $100 \, \mu g/L$.

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
	'				

All criteria were metX
Criteria were not mel
and/or see below

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1.1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1.2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1.2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1.1.2.2-	65-120	45-120
Tetrachloroethane-d2		
1.2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID

Date

DMCs

% Recovery

Action

DMCs recoveries within the required limits. Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

1. For any recovery greater than the upper acceptance limit:

- a. Qualify detected associated volatile target compounds as estimated high (J+).
- b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action				
Criteria	Detect Associated Compounds	Non-detected Associated Compounds			
° oR < 10° o	J-	R			
100 o ≤ 0 oR < Lower Acceptance Limit	J-	UJ			
Lower Acceptance Limit ≤ 0 oR \leq Upper Acceptance Limit	No qualification	No qualification			
%R > Upper Acceptance Limit	J± n	No qualification			

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-da (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d: (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d. (DMC'-6)
Acetone 2-Butanone	1.1-Dichloroethane Bromoehloromethane Chloroform Dibromoehloromethane Bromoform	Trichloro fluoromethane 1,1,2-Trichloro-1,2,2-trifluoroethane Methyl acetate Methyl-tert-butyl ether 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dibromoethane 1,2-Dichloroethane
Benzene-de (DMC-7)	1,2-Dichloropropane-ds (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1.2-Dichloropropane Bromodichloromethane	Trichloroethene Toltiene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-d4 (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-dz (DMC-12)
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	4-Methyl-2-pentanone 2-Hexanone	1.1.2.2Tetrachloroethane 1.2-Dibromo-3-chloropropane
1,2-Dichlorobenzene-d4 (DMC-13) Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-4-Trichlorobenzene 1,2,3-Trichlorobenzene		

All criteria were metX
Criteria were not met
and/or see below

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_JC15883-1		Matrix/Level:Groundwater			
MS OR MSD	COMPOUND		RPD	QC LIMITS	ACTION
MS/MSD_%_	recoveries_and_RPD	_within_la	boratory	_control_limits	

Note: MS/MSD criteria apply to the unspiked sample.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

 No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	j
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
Recoveri	es(blank_spike	e)_within_laboratory_control	I_limits	
		72h (1 111h		

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:_Groundwater

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			-10-1		
No field/lebers	tone due	diagte applicant with	h this data nackage	MOMICO	DDD wood to page
			th this data package. % for target analytes d		
			3		

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _X
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal standard area counts within the required criteria.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 200.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- If an internal standard area count for a sample or blank is greater than or equal to 20.0%, and less than or equal to 200% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 30.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 30.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

- 6. If required internal standard compounds are not added to a sample or blank, qualify detects and non-detects as unusable (R).
- 7. If the required internal standard compound is not analyzed at the specified concentration in a sample or blank, use professional judgment to qualify detects and non-detects.

Table. Internal Standard Actions for Low/Medium Volatiles Analyses - Summary

	Act	Action		
Criteria	Detected Associated Compounds*	Non-detected Associated Compounds*		
Area counts > 200% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J.	No qualification		
Area counts < 20% of 12-hour standard (opening CCV or mid-point standard from initial calibration)	J÷	Ř		
Area counts $\geq 50\%$ but $\leq 200\%$ of 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification			
RT difference > 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	R **	R		
RT difference ≤ 30.0 seconds between samples and 12-hour standard (opening CCV or mid-point standard from initial calibration)	No qualification			

^{*} For volatile compounds associated to each internal standard, see TABLE - VOLATILE TARGET ANALYTES, DEUTERATED MONITORING COMPOUNDS WITH ASSOCIATED INTERNAL STANDARDS FOR QUANTITATION in SOM02.2, Exhibit D, available at: http://www.epa.gov/superfund/programs/clp/download/som/som22d.pdf

^{**} Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.

		All criteria were metX Criteria were not met and/or see below
TARGET COM	POUND IDENTIFICATION	
Criteria:		
	[opening Continuing Calibration Verificati	ompounds within ±0.06 RRT units of the ion (CCV) or mid-point standard from the Yes? or No?
List compounds	s not meeting the criteria described above	:
Sample ID	Compounds	Actions
spectrum from	the associated calibration standard (open st match according to the following criteria All ions present in the standard mass sp 10% must be present in the sample spectra relative intensities of these ions standard and sample spectra (e.g., for standard spectrum, the corresponding 30-70%).	pectrum at a relative intensity greater than
List compounds	s not meeting the criteria described above	:
Sample ID	Compounds	Actions

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- 2. Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

		_	_
4	101	-11	C_{S}
	IST		1

Sample ID	Compound	Sample ID	Compound
	[20]		
 -			

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and gualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene

- isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).
- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _X
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 2. For non-aqueous samples, in the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table below).
- 3. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 4. Results between MDL and CRQL should be qualified as estimated "J".
- 5. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves are not reported.

Table. Percent Moisture Actions for Low/Medium Volatiles Analysis for Non-Aqueous Samples

Criteria	Action				
	Detected Associated Compounds	Non-detected Associated Compounds			
% Moisture < 70.0	No qualification				
70.0 < % Moisture < 90.0	J	UJ			
% Moisture > 90.0	J	R			

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Sample ID

JC15883-1

Methyl Tert Butyl Ether

RF = 1.55

[] = (354134)(50)/(1.55)(327556) = 34.9 ppb Ok

B.	Percent Solids							
	List samples which have ≥ 70 % solids							
		,						
		_						
		- ,						

ΑII	criteria	were	met_	_X
Cri	leria w	ere no	t met	
and	Vor se	e belo	w	_

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
.		
		

All criteria were met _X
Criteria were not met
and/or see below

OTHER ISSUES

A.	System Perfor	mance	
List sa	amples qualified	based on the degradation of system pe	rformance during simple analysis:
Samp		Comments	Actions
No(degradation_of_s	system_performance_observed	
Action	ì.		
degra	ded during samp	ment to qualify the data if it is deter ble analyses. Inform the Contract Labo f system performance which significant	oratory Program COR any action as a
B.	Overall Assess	ment of Data	
List sa	amples qualified	based on other issues:	
Samp	le ID	Comments	Actions
		s_observed_that_require_qualification_ocission_purposes	
Action 1.	Use profession	nal judgment to determine if there is an	

- Write a brief narrative to give the user an indication of the analytical limitations of the data. 2. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

EXECUTIVE NARRATIVE

SDG No:

JC15883

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8015C (DAI)

Number of Samples:

7

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Six (6) groundwater samples and one trip blank were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

1. Initial and continuing calibration verification not meeting the method specific criteria for n-butyl alcohol in column #2. Results were reported from

column #1. No action taken, professional judgment.

Critical findings:

None

Major findings:

None

Minor findings:

None

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

April 10

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC15558-1

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Dilution Factor		Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	~	Ų	Yes

Sample ID: JC15558-1MSD

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Dilution Factor		Lab Flag	Validation	Reportable
Ethanol	4820	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	5530	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	4840	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	4430	ug/i	1.0	-	U	Yes
n-Butyl Alcohol	4530	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	5030	ug/l	1.0	-	U	Yes
Methanol	5000	ug/l	1.0	-	U	Yes

Sample ID: JC15558-1MS

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ethanol	5340	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	5150	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	5390	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	5170	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	4520	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	5170	ug/l	1.0	-	U	Yes
Methanol	5070	ug/l	1.0	-	U	Yes

Sample ID: JC15558-2

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Dilution Factor		Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC15558-3

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Dilution Factor		Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	υ	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC15558-4

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Dilution Factor		Lab Flag	Validation	Reportable
Ethanol	100	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	U	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	υ	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC15558-5

* * 1 *

Sample location: BMSMC Former Tank Farm

Sampling date: 3/4/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units Di	lution Factor	Lab Flag	Validation	Reportable
Ethanol	100	ug/i	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/i	1.0	-	υ	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

	Project Number:JC15883
	Date:03/04/2016
	Shipping Date:03/08/2016
	EPA Region:2
REVIEW OF VOLATILE ORGATHE ORGATHE following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using production and in better serving the needs of the data users. The USEPA data validation guidance documents in the following Evaluating Solid Waste, Physical/Chemical Methods SW specifically for Methods 8000/8015C are utilized. The QC or data review worksheets are from the primary guidance documents in the hardcopied (laboratory name) _Accutest	vere created to delineate required validation of the sample results were assessed according to the sample results
Lab. Project/SDG No.:JC15883 No. of Samples:7	Sample matrix:Groundwater
Trip blank No.:JC15883-5	
Field blank No	
Field blank No.: Equipment blank No.:	
Field duplicate No.:	
Tierd duplioute 110	
X Data CompletenessX Holding TimesN/A_ GC/MS TuningN/A_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_Low_molecular_weight_alcohols_b	y_SW-846_8015C_(DAI)
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated no detect Reviewer: Date:April_11,_2016	
DateApril_11,_k010	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	*	
8		
-		

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

DATE SAMPLED	DATE ANALYZED	pН	ACTION
ul samples analyzed w	ithin the recommended	method	holding time.
		-	
		-	
			
		DATE SAMPLED DATE ANALYZED Ill samples analyzed within the recommended	DATE SAMPLED DATE ANALYZED pH Ill samples analyzed within the recommended method

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 6°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

qualified or rejected.

List

All criteria were metN/A Criteria were not met see below	
GC/MS TUNING	
The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits	
N/A_ The BFB performance results were reviewed and found to be within the specified criteria.	
N/A_ BFB tuning was performed for every 12 hours of sample analysis.	
If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.	

affected:

samples

If mass calibration is in error, all associated data are rejected.

the

All criteria were met
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	02/29/16
Dates of continuing calibration:	_02/29/16 (initial);_03/11/16
Instrument ID number:	GCGH
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial and o	continuin	ıg calibra	ation meets method spe	cific criteria except for n-b	utyl alcohol in column
#2	. Result	s reporte	are from column #1.	No action taken, profession	nal judgment.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be ≤ 15 % regardless of method requirements for CCC.

All %Ds must be ≤ 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _	Х_
Criteria were not met	
and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

LAB ID	LEVEL! MATRIX	COMPOUND	CONCENTRATION UNITS
_blank_meeth	_method_speci	lic_criteria	
Trip blank			
LAB ID	LEVEL! MATRIX	COMPOUND	CONCENTRATION UNITS
	_blank_meeth	blank_meeth_method_specif	

All criteria were met _	X
Criteria were not met	
and/or see below	

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE 10	exanol		TOL-d8	8FB	ACTION
_All_surrogate_recove	eries_within_lal	boratory_con	trol_limits		
	-				
QC Limits* (Aqueous)	40				
LL_to_UL QC Limits* (Solid-Low	_48_to_150_	to	to	to	•
LL_to_UL QC Limits* (Solid-Med	to	to	to	to	-
LL_to_UL	to	to	to	to	
1,2-DCA = 1,2-Dichlor DBFM = Dibromofluor			TOL-d8 = BFB = Bro	Toluene-d8 omofluorobenzer	ne

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _X				
Criteria were not met				
and/or see below				

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC15883-1MS/-1MSD			Matrix/Level:_	Groundwater		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		_
<u> </u>						197

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met __X__ Criteria were not met and/or see below ____

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

1.00.10

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	FC2 ID	COMPOUND	% R	QC LIMIT	
Recoveries_within_laboratory_control_limits					
			- 200-1 200001 700-170000		

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metN/A Criteria were not met and/or see below
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION		
No field/laboratory duplicate analyzed with this data package. MS/MSD recoveries RPD used to assess precision. RPD within laboratory and generally acceptable control limits.							

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metN/A
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE ACTION RANGE	

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY IS AREA < -2		IS AREA = -25 %	IS AREA > + 100%
		TO - 50%	
Positive results	J	J	J
Nondetected results	R	ΠΊ	ACCEPT

If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met __X__ Criteria were not met and/or see below ____

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC15883-1

Hexanol

RF = 127.5

[] = (539940)/(127.5)

= 4234.8 ppb OK

All criteria were met _X_	
Criteria were not met	
and/or see below	

XII.	OI.	IAN	JTIT		N I	IMITS
All.	No.	יוחו	/	τ	74 NI L	-(1441)

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION

3.	Percent Solids					
	List samples which	ch have ≤ 50 % :	solids			
	ν			<u> </u>		

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)